论文标题

部分可观测时空混沌系统的无模型预测

Exploration of Various Deep Learning Models for Increased Accuracy in Automatic Polyp Detection

论文作者

Isidro, Ariel E., Fajardo, Arnel C., Hernandez, Alexander A.

论文摘要

本文的创建是为了探索深度学习模型和算法,从而在检测结肠镜检查图像上检测息肉时具有最高准确性。先前的研究使用卷积神经网络(CNN)算法实施了深度学习,以检测息肉和非体系。其他研究使用辍学和数据增强算法,但大多不检查过度拟合,因此包括超过四层模型。中国科学院的软件研究所的Rulei Yu等人说,转移学习更好地谈论性能或改善了以前的使用算法。大多数在将转移学习应用于特征提取中。在使用以前的使用模型的情况下,仅使用至少4个CNN层进行了一系列实验,并确定了在应用传输学习的其他模型中产生最高百分比精度的模型。进一步的研究可以将不同的优化器用于不同的CNN ModelSto提高精度。

This paper is created to explore deep learning models and algorithms that results in highest accuracy in detecting polyp on colonoscopy images. Previous studies implemented deep learning using convolution neural network (CNN) algorithm in detecting polyp and non-polyp. Other studies used dropout, and data augmentation algorithm but mostly not checking the overfitting, thus, include more than four-layer modelss. Rulei Yu et.al from the Institute of Software, Chinese Academy of Sciences said that transfer learning is better talking about performance or improving the previous used algorithm. Most especially in applying the transfer learning in feature extraction. Series of experiments were conducted with only a minimum of 4 CNN layers applying previous used models and identified the model that produce the highest percentage accuracy of 98% among the other models that apply transfer learning. Further studies could use different optimizer to a different CNN modelsto increase accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源