论文标题
迈向通用模型,以进行以任务为导向的对话建模
Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken Conversations
论文作者
论文摘要
由于口语和书面数据的分布存在差距,建立对话对话的强大和一般对话模型具有挑战性。本文介绍了我们为DSTC-10的口语对话挑战构建知识基础的对话建模的通用模型的方法。为了减轻口语和书面文本之间的差异,我们主要对书面数据采用广泛的数据增强策略,包括人工错误注入和往返文本语音转换。为了训练强大的模型进行口语对话,我们改进了预训练的语言模型,并为每个子任务应用集合算法。通常,对于检测任务,我们对Roberta和Electra进行微调,并运行错误的集合算法。对于选择任务,我们采用了一个两阶段的框架,该框架由实体跟踪和知识排名组成,并提出了一种多任务学习方法,以通过域分类和实体选择来学习多级语义信息。对于生成任务,我们采用交叉验证数据过程来改善预训练的生成语言模型,然后进行共识解码算法,该算法可以添加任意特征,例如相对\ rouge量表,并将相关的特征权重与\ bleu进行调整。我们的方法在客观评估中排名第三,在最终的官方人类评估中排名第二。
Building robust and general dialogue models for spoken conversations is challenging due to the gap in distributions of spoken and written data. This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10. In order to mitigate the discrepancies between spoken and written text, we mainly employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation. To train robust models for spoken conversations, we improve pre-trained language models, and apply ensemble algorithms for each sub-task. Typically, for the detection task, we fine-tune \roberta and ELECTRA, and run an error-fixing ensemble algorithm. For the selection task, we adopt a two-stage framework that consists of entity tracking and knowledge ranking, and propose a multi-task learning method to learn multi-level semantic information by domain classification and entity selection. For the generation task, we adopt a cross-validation data process to improve pre-trained generative language models, followed by a consensus decoding algorithm, which can add arbitrary features like relative \rouge metric, and tune associated feature weights toward \bleu directly. Our approach ranks third on the objective evaluation and second on the final official human evaluation.