论文标题
用于安全和高通量光纤通信的光子无监督学习处理器
Photonic unsupervised learning processor for secure and high-throughput optical fiber communication
论文作者
论文摘要
随着全球数据的爆炸性增长,对高通量光纤通信(OFC)系统的需求不断增加,以执行大量数据传输和处理。现有的OFC方法主要依赖于电子电路进行数据处理,这严重限制了通信吞吐量。尽管被认为是下一代高速光纤通信的有希望的有希望的,但由于有效的光学计算,系统建模和配置的严重挑战,全光官仍然无法实现。在这里,我们提出了一个端到端的光子编码器(PED)处理器,该处理器将OFC的物理系统映射到光学生成神经网络中。通过将OFC传输过程建模为构造的光学潜在空间的变化,PED通过无监督优化学习了抗噪声的编码方案。使用多层参数衍射神经网络,PED建立了一个大规模和高通量光学计算框架,该框架将主要OFC计算集成了包括编码,加密和压缩到光学域的主要OFC计算。与最先进的设备相比,整个系统将OFC系统中的计算延迟提高了五个数量级。在基准测试数据集时,PED在实验上实现了传输误差比(ER)的降低32%,而不是On-Off Keying(OOK),这是总体传输中最低ER的主流方法之一。正如我们在医疗数据上所证明的那样,PED将传输吞吐量增加了两个数量级,而不是8级脉冲振幅调制(PAM-8)。我们认为,提出的光子编码器 - 码编码处理器不仅为下一代全光系统铺平了道路,而且还促进了广泛的基于AI的物理系统设计。
Following the explosive growth of global data, there is an ever-increasing demand for high-throughput optical fiber communication (OFC) systems to perform massive data transmission and processing. Existing OFC methods mainly rely on electronic circuits for data processing, which severely limits the communication throughput. Though considered promising for the next-generation high-speed fiber communication, all-optical OFC remains unachievable due to serious challenges in effective optical computing, system modeling and configuring. Here we propose an end-to-end photonic encoder-decoder (PED) processor which maps the physical system of OFC into an optical generative neural network. By modeling the OFC transmission process as the variation in the constructed optical latent space, the PED learns noise-resistant coding schemes via unsupervised optimization. With multi-layer parametric diffractive neural networks, the PED establishes a large-scale and high-throughput optical computing framework that integrates the main OFC computations including coding, encryption and compression to the optical domain. The whole system improves the latency of computation in OFC systems by five orders of magnitude compared with the state-of-the-art device. On benchmarking datasets, the PED experimentally achieves up to 32% reduction in transmission error ratio (ER) than on-off keying (OOK), one of the mainstream methods with the lowest ER in general transmission. As we demonstrate on medical data, the PED increases the transmission throughput by two orders of magnitude than 8-level pulse amplitude modulation (PAM-8). We believe the proposed photonic encoder-decoder processor not only paves the way to the next-generation all-optical OFC systems, but also promotes a wide range of AI-based physical system designs.