论文标题
基于GPT的开放式知识跟踪
GPT-based Open-Ended Knowledge Tracing
论文作者
论文摘要
在教育应用中,知识追踪是指估计学生过去对问题的回答和预测未来表现的时间变化的概念/技能掌握水平的问题。大多数现有知识追踪方法的一个关键局限性是,他们将学生对问题的回答视为二进制评估,即是正确的还是不正确的。响应正确性分析/预测忽略了响应确切内容中包含的学生知识的重要信息,尤其是对于开放式问题。在本文中,我们通过研究预测学生对问题的确切开放式回答的新任务,对开放式知识追踪(OKT)进行了首次探索。我们的工作以编程问题为基础,基于计算机科学教育的领域。我们为OKT问题(一种学生知识指导的代码生成方法)开发了一种初始解决方案,该方法使用语言模型与学生知识跟踪方法结合了程序合成方法。我们还对真实的学生代码数据集进行了一系列定量和定性实验,以验证OKT并证明其在教育应用中的希望。
In education applications, knowledge tracing refers to the problem of estimating students' time-varying concept/skill mastery level from their past responses to questions and predicting their future performance. One key limitation of most existing knowledge tracing methods is that they treat student responses to questions as binary-valued, i.e., whether they are correct or incorrect. Response correctness analysis/prediction ignores important information on student knowledge contained in the exact content of the responses, especially for open-ended questions. In this paper, we conduct the first exploration into open-ended knowledge tracing (OKT) by studying the new task of predicting students' exact open-ended responses to questions. Our work is grounded in the domain of computer science education with programming questions. We develop an initial solution to the OKT problem, a student knowledge-guided code generation approach, that combines program synthesis methods using language models with student knowledge tracing methods. We also conduct a series of quantitative and qualitative experiments on a real-world student code dataset to validate OKT and demonstrate its promise in educational applications.