论文标题

永远值得信赖的数据:答案是答案吗?

Trusted Data Forever: Is AI the Answer?

论文作者

Frontoni, Emanuele, Paolanti, Marina, Lauriault, Tracey P., Stiber, Michael, Duranti, Luciana, Muhammad, Abdul-Mageed

论文摘要

档案机构和计划在全球范围内致力于确保政府,组织,社区和个人的记录被保存在后代,作为文化遗产,作为权利来源,以及作为持有过去并为未来提供责任的工具。通过采用战略和技术措施来保证这一承诺以任何媒介和形式的数字资产的长期保存 - 文本,视觉或听觉。公共和私人档案是世界上最大的数据的最大提供商,并共同托管了可信数据的Yottabytes,将永远保存。保留和保存,安排和描述,管理和管理以及访问和使用的几个方面仍然开放。特别是,人工智能(AI)的最新进展开放了有关AI是否可以支持值得信赖公共记录的可用性和可访问性的讨论。本文介绍了Interpares Trust AI(我信任AI)国际研究伙伴关系的初步结果,该伙伴关系旨在(1)识别和开发特定的AI技术来解决关键记录和档案的挑战; (2)确定在记录和档案中使用AI技术的好处和风险; (3)确保档案概念和原则为负责人AI的发展提供了信息; (4)通过案例研究和示范的集团来验证结果。

Archival institutions and programs worldwide work to ensure that the records of governments, organizations, communities, and individuals are preserved for future generations as cultural heritage, as sources of rights, and as vehicles for holding the past accountable and to inform the future. This commitment is guaranteed through the adoption of strategic and technical measures for the long-term preservation of digital assets in any medium and form - textual, visual, or aural. Public and private archives are the largest providers of data big and small in the world and collectively host yottabytes of trusted data, to be preserved forever. Several aspects of retention and preservation, arrangement and description, management and administrations, and access and use are still open to improvement. In particular, recent advances in Artificial Intelligence (AI) open the discussion as to whether AI can support the ongoing availability and accessibility of trustworthy public records. This paper presents preliminary results of the InterPARES Trust AI (I Trust AI) international research partnership, which aims to (1) identify and develop specific AI technologies to address critical records and archives challenges; (2) determine the benefits and risks of employing AI technologies on records and archives; (3) ensure that archival concepts and principles inform the development of responsible AI; and (4) validate outcomes through a conglomerate of case studies and demonstrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源