论文标题

部分可观测时空混沌系统的无模型预测

Coordinate Translator for Learning Deformable Medical Image Registration

论文作者

Liu, Yihao, Zuo, Lianrui, Han, Shuo, Xue, Yuan, Prince, Jerry L., Carass, Aaron

论文摘要

大多数基于深度学习(DL)的可变形图像登记方法使用卷积神经网络(CNN)来估计移动和固定图像对的位移字段。但是,这要求CNN中的卷积内核不仅从输入中提取强度特征,而且还了解图像坐标系。我们认为,后者的任务对传统的CNN来说是具有挑战性的,从而限制了他们在注册任务中的绩效。为了解决此问题,我们首先介绍坐标翻译器,坐标转换器是一个可区分的模块,该模块识别固定和移动图像之间的匹配功能,并在不需要训练的情况下输出其坐标对应关系。它卸载了了解CNN的图像坐标系的负担,从而使它们可以专注于特征提取。然后,我们提出了一个新颖的可变形注册网络IM2Grid,该网络使用多个坐标转换器的层次转换器与从CNN编码中提取的层次结构特征,并以粗到细胞的方式输出变形字段。我们将IM2Grid与无监督的3D磁共振图像注册的最新DL和非DL方法进行了比较。我们的实验表明,IM2Grid在定性和定量上都优于这些方法。

The majority of deep learning (DL) based deformable image registration methods use convolutional neural networks (CNNs) to estimate displacement fields from pairs of moving and fixed images. This, however, requires the convolutional kernels in the CNN to not only extract intensity features from the inputs but also understand image coordinate systems. We argue that the latter task is challenging for traditional CNNs, limiting their performance in registration tasks. To tackle this problem, we first introduce Coordinate Translator, a differentiable module that identifies matched features between the fixed and moving image and outputs their coordinate correspondences without the need for training. It unloads the burden of understanding image coordinate systems for CNNs, allowing them to focus on feature extraction. We then propose a novel deformable registration network, im2grid, that uses multiple Coordinate Translator's with the hierarchical features extracted from a CNN encoder and outputs a deformation field in a coarse-to-fine fashion. We compared im2grid with the state-of-the-art DL and non-DL methods for unsupervised 3D magnetic resonance image registration. Our experiments show that im2grid outperforms these methods both qualitatively and quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源