论文标题
量子本地差异隐私和量子统计查询模型
Quantum Local Differential Privacy and Quantum Statistical Query Model
论文作者
论文摘要
量子统计查询提供了一个理论框架,用于调查具有有限量子资源的学习者的计算能力。在当前情况下,该模型尤其重要,如果可用的量子设备受到严重的噪声,并且量子内存有限。另一方面,量子差异隐私的框架表明,在某些情况下,噪声可以使计算受益,增强鲁棒性和统计安全性。在这项工作中,我们在本地模型中建立了量子统计查询与量子差异隐私之间的等效性,将著名的经典结果扩展到量子设置。此外,我们在局部微分隐私下得出了量子相对熵的强大数据处理不平等,并将此结果应用于不对称假设测试的任务,并进行了限制测量。最后,我们考虑在当地差异隐私下考虑量子多方计算的任务。作为原则的证明,我们证明了在此模型中可以有效地学习奇偶校验函数,而相应的经典任务需要指数级的样本。
Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources. This model is particularly relevant in the current context, where available quantum devices are subject to severe noise and have limited quantum memory. On the other hand, the framework of quantum differential privacy demonstrates that noise can, in some cases, benefit the computation, enhancing robustness and statistical security. In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model, extending a celebrated classical result to the quantum setting. Furthermore, we derive strong data processing inequalities for the quantum relative entropy under local differential privacy and apply this result to the task of asymmetric hypothesis testing with restricted measurements. Finally, we consider the task of quantum multi-party computation under local differential privacy. As a proof of principle, we demonstrate that the parity function is efficiently learnable in this model, whereas the corresponding classical task requires exponentially many samples.