论文标题
在不利天气条件下多模式2D对象检测的无监督域自适应方法
An Unsupervised Domain Adaptive Approach for Multimodal 2D Object Detection in Adverse Weather Conditions
论文作者
论文摘要
通过互补感应方式整合不同的表示,对于自主驾驶中的强大场景解释至关重要。尽管近年来,融合2D对象检测的视觉和范围数据的深度学习体系结构逐渐蓬勃发展,但相应的方式可以在不利的天气或照明条件下降解,最终导致性能下降。尽管域的适应方法试图弥合源域和目标域之间的域间隙,但它们不容易扩展到异质数据分布。在这项工作中,我们提出了一个无监督的域适应框架,该框架将RGB和LIDAR传感器的2D对象检测器适应一个或多个具有不利天气条件的目标域。我们提出的方法由三个组成部分组成。首先,设计了一个模拟天气扭曲的数据增强方案,以增加域的混乱并防止源数据过度拟合。其次,为了促进跨域前景对象对齐,我们通过多尺度的熵加权域歧视器利用多种方式的互补特征。最后,我们使用精心设计的借口任务来学习目标域数据的更强大表示。在密集数据集上执行的实验表明,我们的方法可以大大减轻单目标域适应(STDA)设置下的域间隙,并且探索较少且较少的一般多目标域适应性(MTDA)设置。
Integrating different representations from complementary sensing modalities is crucial for robust scene interpretation in autonomous driving. While deep learning architectures that fuse vision and range data for 2D object detection have thrived in recent years, the corresponding modalities can degrade in adverse weather or lighting conditions, ultimately leading to a drop in performance. Although domain adaptation methods attempt to bridge the domain gap between source and target domains, they do not readily extend to heterogeneous data distributions. In this work, we propose an unsupervised domain adaptation framework, which adapts a 2D object detector for RGB and lidar sensors to one or more target domains featuring adverse weather conditions. Our proposed approach consists of three components. First, a data augmentation scheme that simulates weather distortions is devised to add domain confusion and prevent overfitting on the source data. Second, to promote cross-domain foreground object alignment, we leverage the complementary features of multiple modalities through a multi-scale entropy-weighted domain discriminator. Finally, we use carefully designed pretext tasks to learn a more robust representation of the target domain data. Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap under the single-target domain adaptation (STDA) setting and the less explored yet more general multi-target domain adaptation (MTDA) setting.