论文标题

某些基于非亚伯集团的密钥交换协议的隐式分析

Cryptanalysis of some Nonabelian Group-Based Key Exchange Protocols

论文作者

Tinani, Simran, Matteotti, Carlo, Rosenthal, Joachim

论文摘要

在非亚伯基于非阿比亚组的密码学的最近新兴领域中,突出使用的单向函数是共轭搜索问题(CSP),平台组的两个重要类别是polycyclic和矩阵组。在本文中,我们使用[10],[26]和[29]中的三个协议作为我们的起点,讨论了这两类平台组中共轭搜索问题(CSP)的复杂性。我们在具有两个发电机的有限多环子基中为CSP生成多项式时间解决方案,并表明受限制的CSP可还原为DLP。在有限字段的基质组中,我们使用了矩阵的Jordan分解来产生A限制的CSP的多项式时间缩短,其中A是通用线性基团的环状亚组,以在FQ的扩展上进行一组DLP。我们使用这些通用方法和结果来描述这三个系统的具体隐式分析算法。特别是,我们表明,在有限磁场上的一组可逆矩阵中,在带有两个发电机的多环形组中,CSP将共轭器仅限于周期性亚组,可降低一组O(n2)离散的对数问题。利用我们的一般结果,我们证明了这三个方案中每种方案的混凝土隐性算法。我们认为,我们的方法和发现可能允许在一般情况下进行其他几项启发式攻击。

In the recently emerging field of nonabelian group-based cryptography, a prominently used one-way function is the Conjugacy Search Problem (CSP), and two important classes of platform groups are polycyclic and matrix groups. In this paper, we discuss the complexity of the conjugacy search problem (CSP) in these two classes of platform groups using the three protocols in [10], [26], and [29] as our starting point. We produce a polynomial time solution for the CSP in a finite polycyclic group with two generators, and show that a restricted CSP is reducible to a DLP. In matrix groups over finite fields, we usedthe Jordan decomposition of a matrix to produce a polynomial time reduction of an A-restricted CSP, where A is a cyclic subgroup of the general linear group, to a set of DLPs over an extension of Fq. We use these general methods and results to describe concrete cryptanalysis algorithms for these three systems. In particular, we show that in the group of invertible matrices over finite fields and in polycyclic groups with two generators, a CSP where conjugators are restricted to a cyclic subgroup is reducible to a set of O(n2) discrete logarithm problems. Using our general results, we demonstrate concrete cryptanalysis algorithms for each of these three schemes. We believe that our methods and findings are likely to allow for several other heuristic attacks in the general case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源