论文标题
关于紧凑型的非专用映射的连续近似值
On Successive Approximations for Compact-Valued Nonexpansive Mappings
论文作者
论文摘要
我们表明,在给定的初始点,从baire类别的意义上讲,非专业的紧凑型映射$ f $具有以下属性:有一个独特的连续近似序列,并且该序列收敛到$ f $的固定点。在可分离的Banach空间的情况下,我们表明,对于典型的映射,有一组残留的初始点具有独特的轨迹。
We show that for a given initial point the typical, in the sense of Baire category, nonexpansive compact valued mapping $F$ has the following properties: there is a unique sequence of successive approximations and this sequence converges to a fixed point of $F$. In the case of separable Banach spaces we show that for the typical mapping there is a residual set of initial points that have unique trajectory.