论文标题

在物理世界中欺骗人探测器的对抗性纹理

Adversarial Texture for Fooling Person Detectors in the Physical World

论文作者

Hu, Zhanhao, Huang, Siyuan, Zhu, Xiaopei, Sun, Fuchun, Zhang, Bo, Hu, Xiaolin

论文摘要

如今,配备了AI系统的相机可以捕获和分析图像以自动检测人员。但是,当在现实世界(即物理对抗性示例)中有意地设计模式时,AI系统可能会犯错误。先前的作品表明,可以在衣服上打印对抗斑块,以逃避基于DNN的人探测器。但是,当视角(即相机与物体的角度)变化时,这些对抗性示例可能会在攻击成功率中造成灾难性下降。要执行多角度攻击,我们提出了对抗纹理(Advexture)。 advtexture可以用任意形状覆盖衣服,以便穿着这样的衣服的人可以从不同的视角躲避人探测器。我们提出了一种生成方法,称为基于环形作用的可扩展生成攻击(TC-EGA),以用重复的结构来制作advexture。我们用advexure印刷了几块布,然后在物理世界中制作了T恤,裙子和连衣裙。实验表明,这些衣服可以欺骗物理世界中的人探测器。

Nowadays, cameras equipped with AI systems can capture and analyze images to detect people automatically. However, the AI system can make mistakes when receiving deliberately designed patterns in the real world, i.e., physical adversarial examples. Prior works have shown that it is possible to print adversarial patches on clothes to evade DNN-based person detectors. However, these adversarial examples could have catastrophic drops in the attack success rate when the viewing angle (i.e., the camera's angle towards the object) changes. To perform a multi-angle attack, we propose Adversarial Texture (AdvTexture). AdvTexture can cover clothes with arbitrary shapes so that people wearing such clothes can hide from person detectors from different viewing angles. We propose a generative method, named Toroidal-Cropping-based Expandable Generative Attack (TC-EGA), to craft AdvTexture with repetitive structures. We printed several pieces of cloth with AdvTexure and then made T-shirts, skirts, and dresses in the physical world. Experiments showed that these clothes could fool person detectors in the physical world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源