论文标题

神经网络中可解释的部分零件层次结构和概念语义关系

Interpretable part-whole hierarchies and conceptual-semantic relationships in neural networks

论文作者

Garau, Nicola, Bisagno, Niccolò, Sambugaro, Zeno, Conci, Nicola

论文摘要

深度神经网络在各种任务中取得了出色的成果,通常超过了人类专家。但是,当前神经体系结构的已知局限性是理解和解释网络响应对给定输入的不良访问性。这与大量变量和神经模型的相关非线性直接相关,这些变量通常用作黑匣子。在关键应用程序(例如自动驾驶,安全和安全,医学和健康)时,尽管在给定的任务中,这种系统的准确表现准确地表现了,但网络行为的缺乏可解释性倾向于引起怀疑和有限的信任度。此外,一个单一的度量(例如分类精度)对大多数真实世界的情况提供了无尽的评估。在本文中,我们希望向神经网络中的可解释性迈出一步,提供解释其行为的新工具。我们提出了Agromerator,该框架能够从视觉提示中提供部分整体层次结构的表示,并组织匹配类之间概念的语义层次结构的输入分布。我们在常见数据集上评估了我们的方法,例如Smallnorb,Mnist,Fashionmnist,Cifar-10和Cifar-100,比其他最先进的方法提供了更容易解释的模型。

Deep neural networks achieve outstanding results in a large variety of tasks, often outperforming human experts. However, a known limitation of current neural architectures is the poor accessibility to understand and interpret the network response to a given input. This is directly related to the huge number of variables and the associated non-linearities of neural models, which are often used as black boxes. When it comes to critical applications as autonomous driving, security and safety, medicine and health, the lack of interpretability of the network behavior tends to induce skepticism and limited trustworthiness, despite the accurate performance of such systems in the given task. Furthermore, a single metric, such as the classification accuracy, provides a non-exhaustive evaluation of most real-world scenarios. In this paper, we want to make a step forward towards interpretability in neural networks, providing new tools to interpret their behavior. We present Agglomerator, a framework capable of providing a representation of part-whole hierarchies from visual cues and organizing the input distribution matching the conceptual-semantic hierarchical structure between classes. We evaluate our method on common datasets, such as SmallNORB, MNIST, FashionMNIST, CIFAR-10, and CIFAR-100, providing a more interpretable model than other state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源