论文标题

脂质和胆固醇的三元混合物的晶格模型与可调域大小

A lattice model of ternary mixtures of lipids and cholesterol with tunable domain sizes

论文作者

Sarkar, Tanmoy, Farago, Oded

论文摘要

我们对生物膜中筏结构域物理特性的大部分理解,以及对其形成的机制的一些见识,源于简单模型系统的原子模拟,尤其是由饱和和不饱和脂质的三元混合物和胆固醇(Chol)组成的三元混合物。为了在大空间尺度上探索此类系统的性质,我们在这里提出了一个简单的三元混合晶格模型,涉及少量最近的邻居相互作用项。与不同组合物的混合物的蒙特卡洛模拟与跨多个尺度的实验和原子模拟观测值非常一致,范围从脂质的局部分布到系统的相图。模型的简单性使我们能够确定组件之间的不同交互作用以及它们之间的相互作用。重要的是,通过更改一个模型参数的值,我们可以调整液体订购域的大小,从而模拟两种II型混合物,这些混合物表现出宏观相分离和与纳米镜头结构域的I型混合物。 II型混合物模拟结果非常适合含有饱和DPPC/不饱和DOPC/CHOL的混合物的实验确定相图。当更改可调参数时,我们将获得DPPC/DOPC/CHOL的I型版本,即,如果使用局部措施区分不同状态,则未显示热力学相变的混合物,而是可以安装到同一相图的混合物。我们的模型结果表明,短距离包装可能是生物筏稳定性和尺寸分布的关键调节剂。

Much of our understanding of the physical properties of raft domains in biological membranes, and some insight into the mechanisms underlying their formation stem from atomistic simulations of simple model systems, especially ternary mixtures consisting of saturated and unsaturated lipids, and cholesterol (Chol). To explore the properties of such systems at large spatial scales, we here present a simple ternary mixture lattice model, involving a small number of nearest neighbor interaction terms. Monte Carlo simulations of mixtures with different compositions show an excellent agreement with experimental and atomistic simulation observations across multiple scale, ranging from the local distributions of lipids to the phase diagram of the system. The simplicity of the model allows us to identify the roles played by the different interactions between components, and the interplay between them. Importantly, by changing the value of one of the model parameters, we can tune the size of the liquid-ordered domains, thereby to simulate both Type II mixtures exhibiting macroscopic phase separation and Type I mixtures with nanoscopic domains. The Type II mixture simulation results fit well to the experimentally-determined phase diagram of mixtures containing saturated DPPC/unsaturated DOPC/Chol. When the tunable parameter is changed, we obtain the Type I version of DPPC/DOPC/Chol, i.e., a mixture not showing thermodynamic phase transitions but one that may be fitted to the same phase diagram if local measures are used to distinguish between the different states. Our model results suggest that short range packing is likely to be a key regulator of the stability and size distribution of biological rafts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源