论文标题

使用动态量子几何张量加速量子绝热过程

Speeding up quantum adiabatic processes with dynamical quantum geometric tensor

论文作者

Chen, Jin-Fu

论文摘要

对于量子系统的绝热控制,通过增加过程的运行时间来减少非绝热过渡。完美的量子绝热性通常需要对控制参数的无限缓慢变化。在本文中,我们提出动态量子几何张量作为控制参数空间中的度量,以加快量子绝热过程并在相对较短的时间内达到量子绝热性。达到量子绝热性的最佳方案是根据度量沿着测量路径的恒定速度改变控制参数。对于从n-the ogenstate启动的系统,最佳协议中的过渡概率由p_ {n}(t)\ leq4 \ leq4 \ Mathcal {l} _ {n} _ {n}^{2}^{2}/τ{2} {2} {2},操作时间为量子°vastim timum diabatim timuntium diabatim tim viast量。我们的优化策略通过两个显式模型,即Landau-Zener模型和一维横向ISIN模型进行了说明。

For adiabatic controls of quantum systems, the non-adiabatic transitions are reduced by increasing the operation time of processes. Perfect quantum adiabaticity usually requires the infinitely slow variation of control parameters. In this paper, we propose the dynamical quantum geometric tensor, as a metric in the control parameter space, to speed up quantum adiabatic processes and reach quantum adiabaticity in relatively short time. The optimal protocol to reach quantum adiabaticity is to vary the control parameter with a constant velocity along the geodesic path according to the metric. For the system initiated from the n-th eigenstate, the transition probability in the optimal protocol is bounded by P_{n}(t)\leq4\mathcal{L}_{n}^{2}/τ^{2} with the operation time τand the quantum adiabatic length \mathcal{L}_{n} induced by the metric. Our optimization strategy is illustrated via two explicit models, the Landau-Zener model and the one-dimensional transverse Ising model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源