论文标题

HAR-GCNN:从高度未标记的移动传感器数据中识别人类活动的深图CNN

HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly Unlabeled Mobile Sensor Data

论文作者

Mohamed, Abduallah, Lejarza, Fernando, Cahail, Stephanie, Claudel, Christian, Thomaz, Edison

论文摘要

移动传感器数据识别的人类活动识别问题适用于多个领域,例如健康监测,个人健身,日常生活记录和高级护理。培训人类活动识别模型的一个关键挑战是数据质量。获取包含准确活动标签的平衡数据集需要人类正确注释并可能实时干扰受试者的正常活动。尽管有不正确的注释或缺乏不正确的注释,但人类行为的固有年代学通常是固有的。例如,锻炼后我们洗个澡。这种隐式年表可用于学习未知标签并对未来的活动进行分类。在这项工作中,我们提出了HAR-GCCN,这是一个深图CNN模型,该模型利用了时间顺序相邻的传感器测量之间的相关性,以预测具有至少一个活动标签的未分类活动的正确标签。我们提出了一种新的培训策略,该策略通过利用已知的活动来预测丢失的活动标签。 HAR-GCCN相对于先前使用的基线方法显示出卓越的性能,在不同数据集中将分类准确性提高了约25%,高达68%。代码可在\ url {https://github.com/abduallahmohame/har-gcnn}中获得。

The problem of human activity recognition from mobile sensor data applies to multiple domains, such as health monitoring, personal fitness, daily life logging, and senior care. A critical challenge for training human activity recognition models is data quality. Acquiring balanced datasets containing accurate activity labels requires humans to correctly annotate and potentially interfere with the subjects' normal activities in real-time. Despite the likelihood of incorrect annotation or lack thereof, there is often an inherent chronology to human behavior. For example, we take a shower after we exercise. This implicit chronology can be used to learn unknown labels and classify future activities. In this work, we propose HAR-GCCN, a deep graph CNN model that leverages the correlation between chronologically adjacent sensor measurements to predict the correct labels for unclassified activities that have at least one activity label. We propose a new training strategy enforcing that the model predicts the missing activity labels by leveraging the known ones. HAR-GCCN shows superior performance relative to previously used baseline methods, improving classification accuracy by about 25% and up to 68% on different datasets. Code is available at \url{https://github.com/abduallahmohamed/HAR-GCNN}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源