论文标题

多习惯霍奇金 - 赫克斯利方程的几何奇异扰动分析

Geometric singular perturbation analysis of the multiple-timescale Hodgkin-Huxley equations

论文作者

Kaklamanos, Panagiotis, Popović, Nikola, Kristiansen, Kristian Uldall

论文摘要

我们提出了一个新颖的全球三维减少,对四维Hodgkin-Huxley方程的非二维版本[J。 Rubin和M. Wechselberger,《巨型鱿鱼》 - 隐藏的卡纳德:Hodgkin-Huxley模型的3D几何学,《生物控制论》,97(2007),第5---32页],基于几何学奇异触发理论(GSPT)。我们以两个参数状态研究了所得的三维系统的动力学,其中流在三个不同的时间尺度上演变。具体而言,我们证明该系统根据[P. Kaklamanos,N。Popović和K. U. Kristiansen,三段尺度系统中混合模式振荡的分叉:一个扩展的原型例子,混乱:非线性科学跨学科杂志,32(2022),p。 013108],我们根据外部应用电流对各种射击模式进行了分类。虽然[S. doi,S。nabetani和S. kumagai,由时间尺度变化引起的霍奇金 - 赫克斯利方程的复杂非线性动力学,生物学控制论,85(2001),第51---64页],对于多态霍奇金 - 赫克斯利方程,我们都在介绍了几何形式,以前彼此之间的几何形式均不在那些彼此之间的变化。

We present a novel and global three-dimensional reduction of a non-dimensionalised version of the four-dimensional Hodgkin-Huxley equations [J. Rubin and M. Wechselberger, Giant squid--hidden canard: the 3D geometry of the Hodgkin-Huxley model, Biological Cybernetics, 97 (2007), pp. 5--32] that is based on geometric singular perturbation theory (GSPT). We investigate the dynamics of the resulting three-dimensional system in two parameter regimes in which the flow evolves on three distinct timescales. Specifically, we demonstrate that the system exhibits bifurcations of oscillatory dynamics and complex mixed-mode oscillations (MMOs), in accordance with the geometric mechanisms introduced in [P. Kaklamanos, N. Popović, and K. U. Kristiansen, Bifurcations of mixed--mode oscillations in three--timescale systems: An extended prototypical example, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32 (2022), p. 013108], and we classify the various firing patterns in terms of the external applied current. While such patterns have been documented in [S. Doi, S. Nabetani, and S. Kumagai, Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes, Biological Cybernetics, 85 (2001), pp. 51--64] for the multiple-timescale Hodgkin-Huxley equations, we elucidate the geometry that underlies the transitions between them, which had not been previously emphasised.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源