论文标题

平行的傅立叶Ptychography重建

Parallel Fourier Ptychography reconstruction

论文作者

Zhou, Guocheng, Zhang, Shaohui, Hu, Yao, Cao, Lei, Huang, Yong, Hao, Qun

论文摘要

傅立叶Ptychography吸引了广泛的重点,以实现其大型空间宽度生产和定量相测量的能力。这是一种典型的计算成像技术,是指同时优化成像硬件和重建算法。数据冗余和反问题算法是FPM出色性能的来源。但是与此同时,这种大量的数据处理和复杂算法也大大降低了成像速度。在本文中,我们提出了一个平行的傅立叶Ptychography重建框架,该框架由三个级别的并行计算零件组成,并使用中央处理单元(CPU)和计算统一设备体系结构(CUDA)平台实现了它。在常规的FPM重建框架中,将样品图像分为多个子区域进行分别处理,因为相同的LED的照明角度变化,并且由于非平面分布或非理想样品姿势,不同的LED和不同的子区域包含不同的转化距离。我们首先根据上述特征在空间域中构建平行计算子框架。然后,通过利用不同频谱区域的顺序特性进行更新,在我们的方案中进行了频谱域中的平行计算子帧。通过我们构建的系统获得的不同实验结果验证了建议的并行FPM重建框架的可行性。

Fourier ptychography has attracted a wide range of focus for its ability of large space-bandwidth-produce, and quantative phase measurement. It is a typical computational imaging technique which refers to optimizing both the imaging hardware and reconstruction algorithms simultaneously. The data redundancy and inverse problem algorithms are the sources of FPM's excellent performance. But at the same time, this large amount of data processing and complex algorithms also greatly reduce the imaging speed. In this article, we propose a parallel Fourier ptychography reconstruction framework consisting of three levels of parallel computing parts and implemented it with both central processing unit (CPU) and compute unified device architecture (CUDA) platform. In the conventional FPM reconstruction framework, the sample image is divided into multiple sub-regions for separately processing because the illumination angles for different subregions are varied for the same LED and different subregions contain different defocus distances due to the non-planar distribution or non-ideal posture of biological sample. We first build a parallel computing sub-framework in spatial domain based on the above-mentioned characteristics. And then, by utilizing the sequential characteristics of different spectrum regions to update, a parallel computing sub-framework in the spectrum domain is carried out in our scheme. The feasibility of the proposed parallel FPM reconstruction framework is verified with different experimental results acquired with the system we built.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源