论文标题
快速扩展的Gluon等离子体中的缩放和绝热性
Scaling and adiabaticity in a rapidly expanding gluon plasma
论文作者
论文摘要
在这项工作中,我们旨在获得对重离子碰撞早期产生的Gluon等离子体的远距离平衡行为的定性见解。最近发现Arxiv:1810.10554,QCD有效动力学理论(EKT)中夸克和胶子的分布函数表现出自相似的“缩放”演变,而在时间依赖性缩放指数之前,这些指数很久以前就达到了预缩合力的预缩合动力学固定点值。在这项工作中,我们阐明了这种依赖时间的缩放现象的起源,该现象在玻尔兹曼方程的小角度近似中。我们首先通过数值求解玻尔兹曼方程,发现时间依赖性缩放是该动力学理论的特征,并且它捕获了QCD EKT中硬胶量表的关键定性特征。然后,我们在该方程式中开始分析和半分析研究缩放。我们发现,适当的动量重新缩放允许缩放分布被识别为描述分布函数演化的操作员的瞬时基态,并且缩放函数的方法由激发态的衰减描述。也就是说,有一个框架,系统可以绝热地演变。此外,从绝热条件下,我们可以得出时间依赖性缩放指数的演化方程。除了已知的自由流和BMS固定点外,当数量密度在流体动力之前变小时,我们还确定了一个新的“稀”固定点。小角度近似中对固定点指数的校正与QCD EKT中先前发现的指数的校正是由硬尺度和软尺度之间的比率演变而成的。
In this work we aim to gain qualitative insight on the far-from-equilibrium behavior of the gluon plasma produced in the early stages of a heavy-ion collision. It was recently discovered arXiv:1810.10554 that the distribution functions of quarks and gluons in QCD effective kinetic theory (EKT) exhibit self-similar "scaling" evolution with time-dependent scaling exponents long before those exponents reach their pre-hydrodynamic fixed-point values. In this work we shed light on the origin of this time-dependent scaling phenomenon in the small-angle approximation to the Boltzmann equation. We first solve the Boltzmann equation numerically and find that time-dependent scaling is a feature of this kinetic theory, and that it captures key qualitative features of the scaling of hard gluons in QCD EKT. We then proceed to study scaling analytically and semi-analytically in this equation. We find that an appropriate momentum rescaling allows the scaling distribution to be identified as the instantaneous ground state of the operator describing the evolution of the distribution function, and the approach to the scaling function is described by the decay of the excited states. That is to say, there is a frame in which the system evolves adiabatically. Furthermore, from the conditions for adiabaticity we can derive evolution equations for the time-dependent scaling exponents. In addition to the known free-streaming and BMSS fixed points, we identify a new "dilute" fixed point when the number density becomes small before hydrodynamization. Corrections to the fixed point exponents in the small-angle approximation agree quantitatively with those found previously in QCD EKT and arise from the evolution of the ratio between hard and soft scales.