论文标题

在非线性电动力学中慢慢旋转黑洞

Slowly rotating black holes in nonlinear electrodynamics

论文作者

Kubiznak, David, Tahamtan, Tayebeh, Svitek, Otakar

论文摘要

我们展示(至少原则上)如何构建带电气和磁性的缓慢旋转的黑洞溶液,该溶液耦合到非线性电动力学(NLE)。除了静态度量函数$ f $和从相应的球形溶液中继承的静电电位$ f $外,我们的广义晶状体thirring ansatz是,其特征是两个新功能$ h $(IN the Metric)和$ω$(在矢量电位上)编码旋转效果。在线性麦克斯韦情况下,旋转解决方案完全以静态解决方案为特征,具有$ h =(f-1)/r^2 $和$ω= 1 $。我们表明,当第一个施加时,安萨兹与任何受限的限制(见下文)不一致,但麦克斯韦电动力学不一致。特别是,这意味着(标准)Newman-Janis算法不能用于为任何受限制的非平凡NLE生成旋转解决方案。我们提供了一些明确的示例,这些例子是在NLE的特定模型中缓慢旋转的解决方案,并简要讨论了带电的Taub-nut SpaceTimes。

We show how (at least in principle) one can construct electrically and magnetically charged slowly rotating black hole solutions coupled to non-linear electrodynamics (NLE). Our generalized Lense-Thirring ansatz is, apart from the static metric function $f$ and the electrostatic potential $ϕ$ inherited from the corresponding spherical solution, characterized by two new functions $h$ (in the metric) and $ω$ (in the vector potential) encoding the effect of rotation. In the linear Maxwell case, the rotating solutions are completely characterized by static solution, featuring $h=(f-1)/r^2$ and $ω=1$. We show that when the first is imposed, the ansatz is inconsistent with any restricted (see below) NLE but the Maxwell electrodynamics. In particular, this implies that the (standard) Newman-Janis algorithm cannot be used to generate rotating solutions for any restricted non-trivial NLE. We present a few explicit examples of slowly rotating solutions in particular models of NLE, as well as briefly discuss the NLE charged Taub-NUT spacetimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源