论文标题
1D抗铁磁铁中自旋二极子的命运
The fate of the spin polaron in the 1D antiferromagnets
论文作者
论文摘要
使用T-J模型研究了自旋极性二极管准颗粒的稳定性,该旋转偏极载体在对2D抗铁磁体中的单个孔的研究中良好确定。我们对单个孔的存在进行了精确的奴隶效法转换,并在数值上对结果进行对角线化。我们证明了自旋极化子崩溃 - 并且自旋荷兰分离接管了 - 由于镁麦克努尼相互作用的特定作用和1D T-J模型中的磁核硬核约束所起的特定作用。此外,我们证明,自旋极性子是稳定的,除了在一维抗铁磁铁中发现的独特值,并具有与自旋相互作用的连续对称性。在准1D抗铁磁铁中,对这种独特值的微调极不可能发生,因此,自旋偏极是逼真的1D材料的稳定准粒子。我们的结果导致对自旋polaron语言中准1D抗铁磁体的ARPES光谱进行了新的解释。
The stability of the spin polaron quasiparticle, well established in studies of a single hole in the 2D antiferromagnets, is investigated in the 1D antiferromagnets using a t-J model. We perform an exact slave fermion transformation to the holon-magnon basis, and diagonalize numerically the resulting model in the presence of a single hole. We demonstrate that the spin polaron collapses - and the spin-charge separation takes over - due to the specific role played by the magnon-magnon interactions and the magnon hard-core constraint in the 1D t-J model. Moreover, we prove that the spin polaron is stable for any strength of the magnon-magnon interaction other than the unique value found in a 1D antiferromagnet with the continuous symmetry of the spin interactions. Fine-tuning to this unique value is extremely unlikely to occur in quasi-1D antiferromagnets, therefore the spin polaron is the stable quasiparticle of realistic 1D materials. Our results lead to a new interpretation of the ARPES spectra of quasi-1D antiferromagnets in the spin polaron language.