论文标题
最短的Minkowski台球轨迹
Shortest Minkowski billiard trajectories on convex bodies
论文作者
论文摘要
我们严格调查了$ n $二维凸面上关闭的Minkowski/Finsler台球轨迹。我们概述了与欧几里得特殊情况相比和分化的中心特性,并建立了两个主要结果,以最小化封闭的minkowski/finsler台球轨迹:一个是规律性的结果,另一种是几何性质。在这些结果的基础上,我们开发了一种用于计算飞机上封闭的Minkowski/Finsler台球轨迹的长度最小化的算法。
We rigorously investigate closed Minkowski/Finsler billiard trajectories on $n$-dimensional convex bodies. We outline the central properties in comparison and differentiation from the Euclidean special case and establish two main results for length-minimizing closed Minkowski/Finsler billiard trajectories: one is a regularity result, the other is of geometric nature. Building on these results, we develop an algorithm for computing length-minimizing closed Minkowski/Finsler billiard trajectories in the plane.