论文标题

部分可观测时空混沌系统的无模型预测

Spatio-temporal analysis of chromospheric heating in a plage region

论文作者

Morosin, R., Rodríguez, J. de la Cruz, Baso, C. J. Díaz, Leenaarts, J.

论文摘要

我们对在观察研究中的染色体区域中起作用的加热机制的了解仍然很高。我们研究的目的是估算库数据集中的色圈加热术语,表征其时空分布,并将其设置为在起作用的加热过程中的限制。我们利用NLTE反转来推断使用瑞典1-M太阳能望远镜获取的库数据集的光球模型和色圈模型。我们使用此模型大气来计算H I,Ca II和Mg II原子的色球辐射损失。我们通过倒置模型预测的净辐射损失近似于色球的加热项。为了对大量的视野计算进行分析,我们可以利用神经网络。在较低的色球圈中,CA II线的贡献是主导的,位于光谱脚点的周围。在上染色体上,H I贡献是主导的。上染色体上的辐射损失形成了覆盖材料区域的均匀斑块。净辐射损失可以在平均振幅为AMPQ = 7.6 kW m^{ - 2}的周期性分量中分配,而平均值为-26.1 kW m^{ - 2}的静态(或缓慢发展)的组件。我们的解释是,在下色球层中,辐射损耗正在追踪热磁盖的尖锐下边缘,那里的电流预计将很大。在上色球体上,净辐射损失的磁场和分布都是室内填充的,而周期成分的幅度最大。我们的结果表明,声波加热可能是上染色体上的三分之一能量沉积的原因,而其他加热机制必须负责其余部分。

Our knowledge of the heating mechanisms that are at work in the chromosphere of plage regions remains highly unconstrained from observational studies. The purpose of our study is to estimate the chromospheric heating terms from a plage dataset, characterize their spatio-temporal distribution and set constraints on the heating processes that are at work. We make use of NLTE inversions to infer a model of the photosphere and chromosphere of a plage dataset acquired with the Swedish 1-m Solar Telescope. We use this model atmosphere to calculate the chromospheric radiative losses from H i, Ca ii and Mg ii atoms. We approximate the chromospheric heating terms by the net radiative losses predicted by the inverted model. In order to make the analysis of time-series over a large field-of-view computationally tractable, we make use of a neural network. In the lower chromosphere, the contribution from the Ca ii lines is dominant and located in the surroundings of the photospheric footpoints. In the upper chromosphere, the H i contribution is dominant. Radiative losses in the upper chromosphere form an homogeneous patch that covers the plage region. The net radiative losses can be split in a periodic component with an average amplitude of ampQ = 7.6 kW m^{-2} and a static (or very slowly evolving) component with a mean value of -26.1 kW m^{-2}. Our interpretation is that in the lower chromosphere, the radiative losses are tracing the sharp lower edge of the hot magnetic canopy, where the electric current is expected to be large. In the upper chromosphere, both the magnetic field and the distribution of net radiative losses are room-filling, whereas the amplitude of the periodic component is largest. Our results suggest that acoustic wave heating may be responsible for one third of the energy deposition in the upper chromosphere, whereas other heating mechanisms must be responsible for the rest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源