论文标题
Fabry-Perrot微腔光谱具有良好的结构
Fabry-Perot microcavity spectra have a fine structure
论文作者
论文摘要
光腔可以支持许多横向和纵向模式。近似标量理论预测,这些模式的共振频率集中在不同的顺序中。一个非顺式矢量理论预测,这些簇中的频率退化性被取消,因此每个阶都获得了光谱的精细结构,与在原子光谱中观察到的精细结构相媲美。在本文中,我们为微腔计算了这种精细的结构,并显示了它是如何源自各种非合法效应的,并通过镜像畸变进行了确定。所提出的理论将扰动理论应用于麦克斯韦的方程,并证明是非常强大的。它概括了Fabry-Perot腔的有效1维描述到3维多透明模式描述。因此,它在多种模式效果中提供了新的物理见解,并对Fabry-Perot Spectra中的精细结构进行了详细的预测。
Optical cavities can support many transverse and longitudinal modes. A paraxial scalar theory predicts that the resonance frequencies of these modes cluster in different orders. A non-paraxial vector theory predicts that the frequency degeneracy within these clusters is lifted, such that each order acquires a spectral fine structure, comparable to the fine structure observed in atomic spectra. In this paper, we calculate this fine structure for microcavities and show how it originates from various non-paraxial effects and is co-determined by mirror aberrations. The presented theory, which applies perturbation theory to Maxwell's equations with boundary conditions, proves to be very powerful. It generalizes the effective 1-dimensional description of Fabry-Perot cavities to a 3-dimensional multi-transverse-mode description. It thereby provides new physical insights in several mode-shaping effects and a detailed prediction of the fine structure in Fabry-Perot spectra.