论文标题
手写数学表达式识别的语法感知网络
Syntax-Aware Network for Handwritten Mathematical Expression Recognition
论文作者
论文摘要
手写数学表达识别(HMER)是具有许多潜在应用的具有挑战性的任务。 HMER的最新方法通过编码器架构实现了出色的性能。但是,这些方法符合“从一个字符到另一个字符”进行预测的范式,由于数学表达式的复杂结构或手写的复杂结构,这不可避免地会产生预测错误。在本文中,我们为HMER提出了一种简单有效的方法,该方法是第一个将语法信息纳入编码器编码器网络的方法。具体而言,我们提出了一组语法规则,用于将每个表达式的乳胶标记序列转换为一个解析树。然后,我们将标记序列预测建模为具有深神经网络的树遍布过程。通过这种方式,提出的方法可以有效地描述表达式的语法上下文,从而减轻了HMER的结构预测错误。在三个基准数据集上的实验表明,与先前的艺术相比,我们的方法实现了更好的识别性能。为了进一步验证我们方法的有效性,我们创建了一个大规模数据集,该数据集由从一万个作家中获取的100k手写数学表达图像组成。该工作的源代码,新数据集和预培训的模型将公开使用。
Handwritten mathematical expression recognition (HMER) is a challenging task that has many potential applications. Recent methods for HMER have achieved outstanding performance with an encoder-decoder architecture. However, these methods adhere to the paradigm that the prediction is made "from one character to another", which inevitably yields prediction errors due to the complicated structures of mathematical expressions or crabbed handwritings. In this paper, we propose a simple and efficient method for HMER, which is the first to incorporate syntax information into an encoder-decoder network. Specifically, we present a set of grammar rules for converting the LaTeX markup sequence of each expression into a parsing tree; then, we model the markup sequence prediction as a tree traverse process with a deep neural network. In this way, the proposed method can effectively describe the syntax context of expressions, alleviating the structure prediction errors of HMER. Experiments on three benchmark datasets demonstrate that our method achieves better recognition performance than prior arts. To further validate the effectiveness of our method, we create a large-scale dataset consisting of 100k handwritten mathematical expression images acquired from ten thousand writers. The source code, new dataset, and pre-trained models of this work will be publicly available.