论文标题

Parapose:使用合成数据的参数和域随机化优化姿势估计

ParaPose: Parameter and Domain Randomization Optimization for Pose Estimation using Synthetic Data

论文作者

Hagelskjaer, Frederik, Buch, Anders Glent

论文摘要

姿势估计是确定场景中对象的6D位置的任务。姿势估计有助于机器人设置的能力和灵活性。但是,必须将系统配置为用例,以充分执行。这种配置是耗时的,并限制了姿势估计的可用性,从而限制了机器人系统。深度学习是一种通过直接从数据集学习参数来克服此配置过程的方法。但是,获得此培训数据也可能非常耗时。合成训练数据的使用避免了此数据收集问题,但是需要对训练程序进行配置来克服域间隙问题。此外,还需要配置姿势估计参数。这种配置被开玩笑地称为研究生下降,因为参数是手动调整的,直到获得令人满意的结果为止。本文介绍了一种仅使用合成数据自动配置的方法。这是通过学习网络训练期间的域随机化,然后使用域随机化来优化姿势估计参数来实现的。开发的方法显示在具有挑战性的遮挡数据集中,最新的召回率的最先进性能,以较大的利润率优于所有先前的方法。这些结果证明了使用纯粹合成数据自动设置姿势估计的有效性。

Pose estimation is the task of determining the 6D position of an object in a scene. Pose estimation aid the abilities and flexibility of robotic set-ups. However, the system must be configured towards the use case to perform adequately. This configuration is time-consuming and limits the usability of pose estimation and, thereby, robotic systems. Deep learning is a method to overcome this configuration procedure by learning parameters directly from the dataset. However, obtaining this training data can also be very time-consuming. The use of synthetic training data avoids this data collection problem, but a configuration of the training procedure is necessary to overcome the domain gap problem. Additionally, the pose estimation parameters also need to be configured. This configuration is jokingly known as grad student descent as parameters are manually adjusted until satisfactory results are obtained. This paper presents a method for automatic configuration using only synthetic data. This is accomplished by learning the domain randomization during network training, and then using the domain randomization to optimize the pose estimation parameters. The developed approach shows state-of-the-art performance of 82.0 % recall on the challenging OCCLUSION dataset, outperforming all previous methods with a large margin. These results prove the validity of automatic set-up of pose estimation using purely synthetic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源