论文标题

刺激:360单眼深度估计通过几何感知融合

OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion

论文作者

Li, Yuyan, Guo, Yuliang, Yan, Zhixin, Huang, Xinyu, Duan, Ye, Ren, Liu

论文摘要

将深度学习方法应用于全向图像的众所周知的挑战是球形失真。在密集的回归任务(例如深度估计)中,需要使用扭曲的360图像上的香草CNN层,导致不需要的信息丢失。在本文中,我们提出了一个360个单眼深度估计管道,即全限制,以解决球形失真问题。我们的管道将360图像转换为延伸的透视图(即切线图像),以通过CNN获得贴片的预测,然后合并贴片结果以进行最终输出。为了处理贴片预测之间的差异,这是影响合并质量的主要问题,我们提出了一个新框架,其中包含以下关键组件。首先,我们提出了一种几何感知特征融合机制,该机制将3D几何特征与2D图像特征相结合,以补偿斑块的差异。其次,我们采用基于自发的变压器体系结构来进行贴片信息的全球聚合,从而进一步提高了一致性。最后,我们引入了一种迭代深度改进机制,以进一步根据更准确的几何特征来进一步完善估计的深度。实验表明,我们的方法极大地减轻了失真问题,并在几个360个单眼深度估计基准数据集上实现了最先进的性能。

A well-known challenge in applying deep-learning methods to omnidirectional images is spherical distortion. In dense regression tasks such as depth estimation, where structural details are required, using a vanilla CNN layer on the distorted 360 image results in undesired information loss. In this paper, we propose a 360 monocular depth estimation pipeline, OmniFusion, to tackle the spherical distortion issue. Our pipeline transforms a 360 image into less-distorted perspective patches (i.e. tangent images) to obtain patch-wise predictions via CNN, and then merge the patch-wise results for final output. To handle the discrepancy between patch-wise predictions which is a major issue affecting the merging quality, we propose a new framework with the following key components. First, we propose a geometry-aware feature fusion mechanism that combines 3D geometric features with 2D image features to compensate for the patch-wise discrepancy. Second, we employ the self-attention-based transformer architecture to conduct a global aggregation of patch-wise information, which further improves the consistency. Last, we introduce an iterative depth refinement mechanism, to further refine the estimated depth based on the more accurate geometric features. Experiments show that our method greatly mitigates the distortion issue, and achieves state-of-the-art performances on several 360 monocular depth estimation benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源