论文标题

Saez-Ballester理论中的大地偏差

Geodesic deviation in Saez--Ballester theory

论文作者

Rasouli, S. M. M., Sakellariadou, M., Moniz, Paulo Vargas

论文摘要

我们在任意维度中研究了萨伊兹 - 巴勒斯特(SB)理论的广义版本中的大地偏差(GD)方程。我们首先建立一种一般的形式主义,然后限于特定情况,其中(i)物质 - 能源分布是完美的流体,并且(ii)时空几何形状通过消失的Weyl张量来描述。此外,我们将空间平坦的FLRW宇宙视为背景几何。 基于此设置,我们计算GD方程以及与基本观察者和过去的定向零向量场相关的收敛条件。 此外,我们扩展了该框架,并在\ emph {Modified}sáez--ballester理论(MSBT)中提取相应的测量偏差,其中能量巨型张量和电位严格从额外尺寸的几何形状中出现。为了检查我们的GD方程,我们考虑了SB框架中的两个新型宇宙学模型。此外,我们讨论了上述SB和MSBT框架中的一些典型模型和合适的幻影深色能量场景。 注意到我们的本文宇宙学模型可以适当地包括宇宙的当前时间,我们可以通过分析和/或数值求解GD方程。通过采用正确的能量条件加上观察数据,我们始终描述了偏差矢量$η(z)$的行为,而观察者面积距离$ r_0(z)$ $ r_0(z)$。关于哈勃恒定的问题,我们专门专门研究了普朗克协作报告的观察数据和SH0ES合作,以描绘我们的幻影模型中的$η(z)$和$ r_0(z)$。 随后,我们将结果与与$λ$ CDM模型相关的结果进行了对比。

We study the geodesic deviation (GD) equation in a generalized version of the Sáez--Ballester (SB) theory in arbitrary dimensions. We first establish a general formalism and then restrict to particular cases, where (i) the matter-energy distribution is that of a perfect fluid, and (ii) the spacetime geometry is described by a vanishing Weyl tensor. Furthermore, we consider the spatially flat FLRW universe as the background geometry. Based on this setup, we compute the GD equation as well as the convergence condition associated with fundamental observers and past directed null vector fields. Moreover, we extend that framework and extract the corresponding geodesic deviation in the \emph{modified} Sáez--Ballester theory (MSBT), where the energy-momentum tensor and potential emerge strictly from the geometry of the extra dimensions. In order to examine our herein GD equations, we consider two novel cosmological models within the SB framework. Moreover, we discuss a few quintessential models and a suitable phantom dark energy scenario within the mentioned SB and MSBT frameworks. Noticing that our herein cosmological models can suitably include the present time of our Universe, we solve the GD equations analytically and/or numerically. By employing the correct energy conditions plus recent observational data, we consistently depict the behavior of the deviation vector $η(z)$ and the observer area distance $r_0(z)$ for our models. Concerning the Hubble constant problem, we specifically focus on the observational data reported by the Planck collaboration and the SH0ES collaboration to depict $η(z)$ and $r_0(z)$ for our herein phantom model. Subsequently, we contrast our results with those associated with the $Λ$CDM model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源