论文标题
广义超几何$ g $ functions采用线性独立值
Generalized hypergeometric $G$-functions take linear independent values
论文作者
论文摘要
在本文中,我们显示了与$ g $ functions值相关的新的通用线性独立标准,包括在连续超测量函数的代数点上值的线性独立性,这是以前未知的。令$ k $为任何代数数字字段,$ v $是$ k $的地方。让$ r \ in \ mathbb {z} $使用$ r \ ge2 $。考虑$ a_1,\ ldots,a_ {r},b_1,\ ldots,b_ {r-1} \ in \ mathbb {q} \ setMinus \ {0 \ {0 \} $不是负整数。假设$ a_k $也不是$ a_k+1-b_j $是严格的正整数$(1 \ le le k \ le r,1 \ le j \ le le r-1)$。令$α_1,\ ldots,α_m\在k \ setMinus \ {0 \} $中,带有$α_1,\ ldots,α_m$ $ pairwise Difins。通过在\ mathbb {z} $中选择足够大的$β\,具体取决于$ k $和$ v $,以使点$α_1/β,\ ldots,α_m/β$,α_m/β$足够关闭,我们证明了$ rm+1 $+1 $ numbers〜 $: \ bigGl(\ begin {matrix} a_1,\ ldots,a_r \\ b_1,\ ldots,b_ {r-1} \ end {matrix} \ bigM | \ bigM | \ dfrac {α_i}β\ biggr) \ bigGl(\ begin {matrix} a_1+1,\ ldots,\ ldots,\ ldots,a _r+1 \\ b_1+1,\ ldots,b_ {r-s} \ dfrac {α_i}β\ biggr)\ enspace \\&(1 \ le i \ le m,1 \ le s \ le s \ le r-1)\ end end {align*},$ 1 $在$ k $上是线性独立的。必不可少的成分是我们的术语正式构造Padé近似物II型的术语以及对广义的Wronskian的新不利争论。
In this article, we show a new general linear independence criterion related to values of $G$-functions, including the linear independence of values at algebraic points of contiguous hypergeometric functions, which is not known before. Let $K$ be any algebraic number field and $v$ be a place of $K$. Let $r\in\mathbb{Z}$ with $r\ge2$. Consider $a_1,\ldots,a_{r}, b_1,\ldots,b_{r-1}\in \mathbb{Q}\setminus\{0\}$ not being negative integers. Assume neither $a_k$ nor $a_k+1-b_j$ be strictly positive integers $(1\le k \le r, 1\le j \le r-1)$. Let $α_1,\ldots,α_m\in K\setminus\{0\}$ with $α_1,\ldots,α_m$ pairwise distinct. By choosing sufficiently large $β\in \mathbb{Z}$ depending on $K$ and $v$ such that the points $α_1/β,\ldots,α_m/β$ are closed enough to the origin, we prove that the $rm+1$ numbers~$:$ \begin{align*} &{}_{r}F_{r-1} \biggl(\begin{matrix} a_1,\ldots, a_r\\ b_1, \ldots, b_{r-1} \end{matrix} \biggm| \dfrac{α_i}β\biggr)\enspace, \ \ {}_{r}F_{r-1} \biggl(\begin{matrix} a_1+1,\ldots,\ldots,\ldots,a_r+1\\ b_1+1, \ldots, b_{r-s}+1,b_{r-s+1},\ldots,b_{r-1} \end{matrix} \biggm| \dfrac{α_i}β\biggr)\enspace\\ &(1\le i \le m, 1\le s \le r-1)\end{align*} and $1$ are linearly independent over $K$. The essential ingredient is our term-wise formal construction of type II of Padé approximants together with new non-vanishing argument for the generalized Wronskian.