论文标题

竞争对手意识到的随机圈策略优化了种族混合动力汽车

Competitors-Aware Stochastic Lap Strategy Optimisation for Race Hybrid Vehicles

论文作者

Braghin, Francesco, Paparusso, Luca, Riani, Manuel, Ruggeri, Fabio

论文摘要

世界耐力锦标赛(WEC)赛车比赛的特征是竞争对手之间的相关性能差距。由混合动力车组成的最快的车辆类别必须尊重技术法规设定的能源使用限制。考虑到缺乏竞争对手,即交通状况,通常通过约束优化问题计算最小化的最佳能量使用策略。据我们所知,大多数最先进的作品都忽略了竞争对手。这导致与现实世界的不匹配,在这种世界中,流量会产生相当大的时间损失。为了弥合这一差距,我们提出了一个新的框架,以脱机为考虑竞争对手的动力总成能源管理计算最佳策略。通过分析以前事件的可用数据,提取了有关行业时间和超过概率的统计信息,以编码竞争对手的行为。然后,使用多代理模型,统计数据被用于生成其沿轨道位置的逼真的蒙特卡洛(MC)模拟。然后采用模拟器来确定最佳策略,如下所示。我们开发了一个用于自我车辆的纵向车辆模型,并根据遗传算法在没有交通的情况下实现了最小化的优化问题。解决各种约束的优化问题会产生一组候选最佳策略。最终实施了随机动态编程,以选择竞争对手的最佳策略,该竞争者的运动是由MC模拟器生成的。我们的方法在实际种族真正的数据中得到验证,可以显着减少圈速时间。

World Endurance Championship (WEC) racing events are characterised by a relevant performance gap among competitors. The fastest vehicles category, consisting in hybrid vehicles, has to respect energy usage constraints set by the technical regulation. Considering absence of competitors, i.e. traffic conditions, the optimal energy usage strategy for lap time minimisation is typically computed through a constrained optimisation problem. To the best of our knowledge, the majority of state-of-the-art works neglects competitors. This leads to a mismatch with the real world, where traffic generates considerable time losses. To bridge this gap, we propose a new framework to offline compute optimal strategies for the powertrain energy management considering competitors. Through analysis of the available data from previous events, statistics on the sector times and overtaking probabilities are extracted to encode the competitors' behaviour. Adopting a multi-agent model, the statistics are then used to generate realistic Monte Carlo (MC) simulation of their position along the track. The simulator is then adopted to identify the optimal strategy as follows. We develop a longitudinal vehicle model for the ego-vehicle and implement an optimisation problem for lap time minimisation in absence of traffic, based on Genetic Algorithms. Solving the optimisation problem for a variety of constraints generates a set of candidate optimal strategies. Stochastic Dynamic Programming is finally implemented to choose the best strategy considering competitors, whose motion is generated by the MC simulator. Our approach, validated on data from a real stint of race, allows to significantly reduce the lap time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源