论文标题

$ O(n)$ Wilson-Fisher固定点的大电荷形式尺寸

Large-charge conformal dimensions at the $O(N)$ Wilson-Fisher fixed point

论文作者

Singh, Hersh

论文摘要

最近使用对$ O(n)$ Wilson-Fisher共形场理论的大电荷扩展的工作表明,大型运算符的异常尺寸可以用一些大型有效野外理论(EFT)的几个低能量常数(LEC)来表达。通过在$ o(n)$ wilson-fisher固定点上执行晶格蒙特卡洛计算,我们计算了最高$ n = 8 $的大型运算符的异常尺寸,并收取$ q = 10 $,并提取了$ O(N)$ o(n)$大的lecs的领先且具有超大的lecs。为了减轻$ O(n)$理论的传统晶格公式的大电荷领域中存在的信噪比问题,我们采用了带有蠕虫算法的$ O(N)$ nonlinear Sigma模型的近期Qubit公式。这使我们能够测试大电荷扩展的有效性以及最近对大电荷EFT系数的大型$ n $预测。

Recent work using a large-charge expansion for the $O(N)$ Wilson-Fisher conformal field theory has shown that the anomalous dimensions of large-charge operators can be expressed in terms of a few low-energy constants (LECs) of a large-charge effective field theory (EFT). By performing lattice Monte Carlo computations at the $O(N)$ Wilson-Fisher fixed point, we compute the anomalous dimensions of large-charge operators up to $N=8$ and charge $Q=10$, and extract the leading and subleading LECs of the $O(N)$ large-charge EFT. To alleviate the signal-to-noise ratio problem present in the large-charge sector of conventional lattice formulations of the $O(N)$ theory, we employ a recently developed qubit formulation of the $O(N)$ nonlinear sigma models with a worm algorithm. This enables us to test the validity of the large-charge expansion and the recent large-$N$ predictions for the coefficients of the large-charge EFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源