论文标题

矩阵值的随机指数和对二次BSDE系统的应用的反向Hölder不等式

The reverse Hölder inequality for matrix-valued stochastic exponentials and applications to quadratic BSDE systems

论文作者

Jackson, Joe

论文摘要

在本文中,我们研究了三个概念之间的联系 - 矩阵值的矩阵的反向Hölder不平等,带有无限系数的线性BSDE的适当性,以及Quadratic BSDE系统的良好性。特别是,我们表明,当且仅当相关矩阵值的Martingale的随机指数满足反向Hölder的不平等时,且仅当具有BMO(有界平均振荡)系数的线性BSDE才能得到充分范围。此外,我们提供了满足这两个等效条件的结构条件。最后,我们将结果应用于线性方程式,以获得具有特殊结构的两种新类的非马克维亚二次二次BSDE系统的全球适应性结果。

In this paper, we study the connections between three concepts - the reverse Hölder inequality for matrix-valued martingales, the well-posedness of linear BSDEs with unbounded coefficients, and the well-posedness of quadratic BSDE systems. In particular, we show that a linear BSDE with bmo (bounded mean oscillation) coefficients is well-posed if and only if the stochastic exponential of a related matrix-valued martingale satisfies a reverse Hölder inequality. Furthermore, we give structural conditions under which these two equivalent conditions are satisfied. Finally, we apply our results on linear equations to obtain global well-posedness results for two new classes of non-Markovian quadratic BSDE systems with special structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源