论文标题

网络移动镜:使用路边激光雷达的一个基于深度学习的现实对象感知平台

Cyber Mobility Mirror: A Deep Learning-based Real-World Object Perception Platform Using Roadside LiDAR

论文作者

Bai, Zhengwei, Nayak, Saswat Priyadarshi, Zhao, Xuanpeng, Wu, Guoyuan, Barth, Matthew J., Qi, Xuewei, Liu, Yongkang, Sisbot, Emrah Akin, Oguchi, Kentaro

论文摘要

对象感知在合作驾驶自动化(CDA)中起着基本作用,该自动化被视为下一代运输系统的革命启动子。但是,基于车辆的感知可能会受​​到有限的感测范围和遮挡,连通性的渗透率低。在本文中,我们提出了网络移动镜(CMM),这是一种用于3D对象感知和重建的下一代实时交通监视系统,以探索路边传感器在现实世界中启用CDA的潜力。 CMM系统由六个主要组成部分组成:1)数据预处理和预处理原始数据的数据; 2)路边3D对象检测器生成3D检测结果; 3)多对象跟踪器以识别检测到的对象; 4)全局定位器使用坐标转换绘制从LIDAR坐标到地理坐标的位置信息; 5)基于云的通信者将感知信息从路边传感器传输到配备的车辆,而6)板上顾问通过图形用户界面(GUI)重建并显示实时交通条件。在这项研究中,在加利福尼亚州里弗赛德市的一个现实世界中,大学大道和爱荷华州的大学大道上部署了野外运营系统,以评估我们的CMM系统的可行性和性能。现场测试的结果表明,我们的CMM原型系统可以以96.99%的精度和83.62%的回忆提供令人满意的感知性能。高保真实时的交通状况(在对象级别)可以以0.14m的平均误差为单位,并显示在配备车辆的GUI上,频率为3-4 Hz。

Object perception plays a fundamental role in Cooperative Driving Automation (CDA) which is regarded as a revolutionary promoter for the next-generation transportation systems. However, the vehicle-based perception may suffer from the limited sensing range and occlusion as well as low penetration rates in connectivity. In this paper, we propose Cyber Mobility Mirror (CMM), a next-generation real-time traffic surveillance system for 3D object perception and reconstruction, to explore the potential of roadside sensors for enabling CDA in the real world. The CMM system consists of six main components: 1) the data pre-processor to retrieve and preprocess the raw data; 2) the roadside 3D object detector to generate 3D detection results; 3) the multi-object tracker to identify detected objects; 4) the global locator to map positioning information from the LiDAR coordinate to geographic coordinate using coordinate transformation; 5) the cloud-based communicator to transmit perception information from roadside sensors to equipped vehicles, and 6) the onboard advisor to reconstruct and display the real-time traffic conditions via Graphical User Interface (GUI). In this study, a field-operational system is deployed at a real-world intersection, University Avenue and Iowa Avenue in Riverside, California to assess the feasibility and performance of our CMM system. Results from field tests demonstrate that our CMM prototype system can provide satisfactory perception performance with 96.99% precision and 83.62% recall. High-fidelity real-time traffic conditions (at the object level) can be geo-localized with an average error of 0.14m and displayed on the GUI of the equipped vehicle with a frequency of 3-4 Hz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源