论文标题
超图上阈值模型的动力学
Dynamics of the threshold model on hypergraphs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The threshold model has been widely adopted as a prototype for studying contagion processes on social networks. In this paper, we consider individual interactions in groups of three or more vertices and study the threshold model on hypergraphs. To understand how high-order interactions affect the breakdown of the system, we develop a theoretical framework based on generating function technology to derive the cascade condition and the giant component of vulnerable vertices, which depend on both hyperedges and hyperdegrees. First, we find a dual role of the hyperedge in propagation: when the average hyperdegree is small, increasing the size of the hyperedges may make the system fragile, while the average hyperdegree is relatively large, the increase of the hyperedges causes the system to be robust. Then, we identify the effects of threshold, hyperdegree, and hyperedge heterogeneities. The heterogeneity of individual thresholds causes the system to be more fragile, while the heterogeneity of individual hyperdegrees or hyperedges increases the robustness of the system. Finally, we show that the higher hyperdegree a vertex has, the larger possibility and faster speed it will get activated. We verify these results by simulating meme spreading on both random hypergraph models and hypergraphs constructed from empirical data.