论文标题

使用结构化潜在的普通微分方程捕获可行的动力学

Capturing Actionable Dynamics with Structured Latent Ordinary Differential Equations

论文作者

Chapfuwa, Paidamoyo, Rose, Sherri, Carin, Lawrence, Meeds, Edward, Henao, Ricardo

论文摘要

使用黑框模型(例如神经普通微分方程(ODE))的动态系统的端到端学习为从数据中学习动态的灵活框架提供了一个灵活的框架,而无需开具动态数学模型。不幸的是,这种灵活性是基于理解动力系统的成本,而该系统无处不在。此外,在各种条件下(输入)(例如处理)或以某种方式分组(例如亚种群的一部分)收集了实验数据。了解这些系统输入对系统输出的影响对于具有动态系统的任何有意义的模型至关重要。为此,我们提出了一个结构化的潜在ode模型,该模型明确捕获了其潜在表示内的系统输入变化。我们的模型以静态潜在变量规范为基础,学习了系统的每个输入的变化(独立)随机因素,从而将系统输入在潜在空间中的影响分开。这种方法通过受控生成的时间序列数据为新颖的输入组合(或扰动)提供了可行的建模。此外,我们提出了一种灵活的方法来量化不确定性,利用分位数回归公式。在受到挑战的生物数据集中,在受控生成的观测数据和生物学上有意义的系统输入的推理中,对竞争基准的结果表现出一致的改善。

End-to-end learning of dynamical systems with black-box models, such as neural ordinary differential equations (ODEs), provides a flexible framework for learning dynamics from data without prescribing a mathematical model for the dynamics. Unfortunately, this flexibility comes at the cost of understanding the dynamical system, for which ODEs are used ubiquitously. Further, experimental data are collected under various conditions (inputs), such as treatments, or grouped in some way, such as part of sub-populations. Understanding the effects of these system inputs on system outputs is crucial to have any meaningful model of a dynamical system. To that end, we propose a structured latent ODE model that explicitly captures system input variations within its latent representation. Building on a static latent variable specification, our model learns (independent) stochastic factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space. This approach provides actionable modeling through the controlled generation of time-series data for novel input combinations (or perturbations). Additionally, we propose a flexible approach for quantifying uncertainties, leveraging a quantile regression formulation. Results on challenging biological datasets show consistent improvements over competitive baselines in the controlled generation of observational data and inference of biologically meaningful system inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源