论文标题
来自生物误差校正代码的耐故障神经网络
Fault-Tolerant Neural Networks from Biological Error Correction Codes
论文作者
论文摘要
在深度学习中,这是一个开放的问题,如果可以使用耐断层的计算:只能使用不可靠的神经元来实现任意可靠的计算?在哺乳动物皮质的网格细胞中,已经观察到模拟误差校正代码可保护状态免受神经尖峰噪声的影响,但是它们在信息处理中的作用尚不清楚。在这里,我们使用这些生物误差校正代码来开发一个通用的耐断层神经网络,如果每个神经元的缺陷都在尖锐的阈值以下,则可以实现可靠的计算;值得注意的是,我们发现嘈杂的生物神经元低于此阈值。发现从故障到耐断层神经计算的相变的发现提出了一种在皮质中可靠计算的机制,并为理解与人工智能和神经形态计算相关的噪声模拟系统开辟了道路。
It has been an open question in deep learning if fault-tolerant computation is possible: can arbitrarily reliable computation be achieved using only unreliable neurons? In the grid cells of the mammalian cortex, analog error correction codes have been observed to protect states against neural spiking noise, but their role in information processing is unclear. Here, we use these biological error correction codes to develop a universal fault-tolerant neural network that achieves reliable computation if the faultiness of each neuron lies below a sharp threshold; remarkably, we find that noisy biological neurons fall below this threshold. The discovery of a phase transition from faulty to fault-tolerant neural computation suggests a mechanism for reliable computation in the cortex and opens a path towards understanding noisy analog systems relevant to artificial intelligence and neuromorphic computing.