论文标题
通过协调的多代理深钢筋学习,核层间切片资源分配
Inter-Cell Slicing Resource Partitioning via Coordinated Multi-Agent Deep Reinforcement Learning
论文作者
论文摘要
网络切片使操作员能够为具有特定要求的不同服务配置虚拟网络实例。为了获得切片感知的无线电资源调度,需要动态切片资源分配来协调多电池切片资源并减轻细胞间干扰。但是,由于复杂的相互依存关系,板板间资源限制和特定于服务的要求,导致得出分析解决方案是一项挑战。在本文中,我们提出了一种多代理的深入增强学习(DRL)方法,可改善最大速度切片性能,同时保持资源能力的限制。我们设计了两个协调方案,以允许分布式药物协调和减轻细胞间干扰。所提出的方法在系统级模拟器中进行了广泛的评估。数值结果表明,与延迟和收敛有关的拟议方法优于集中式方法。与基线方法相比,提出的方法提高了资源效率的两倍以上。
Network slicing enables the operator to configure virtual network instances for diverse services with specific requirements. To achieve the slice-aware radio resource scheduling, dynamic slicing resource partitioning is needed to orchestrate multi-cell slice resources and mitigate inter-cell interference. It is, however, challenging to derive the analytical solutions due to the complex inter-cell interdependencies, interslice resource constraints, and service-specific requirements. In this paper, we propose a multi-agent deep reinforcement learning (DRL) approach that improves the max-min slice performance while maintaining the constraints of resource capacity. We design two coordination schemes to allow distributed agents to coordinate and mitigate inter-cell interference. The proposed approach is extensively evaluated in a system-level simulator. The numerical results show that the proposed approach with inter-agent coordination outperforms the centralized approach in terms of delay and convergence. The proposed approach improves more than two-fold increase in resource efficiency as compared to the baseline approach.