论文标题

chire的椭圆波:耦合的Helmholtz方程

Chirped Elliptic Waves: Coupled Helmholtz Equations

论文作者

Saha, Naresh, Roy, Barnana, Khare, Avinash

论文摘要

在存在非kerr非线性(如自我陡峭和自频移动)的情况下,在耦合的立方非线性Helmholtz方程的框架内获得了精确的椭圆波解。结果表明,对于自我陡峭和自频移参数的特定组合,相关的非平凡阶段在整个孤立波轮廓上会导致chirp逆转。但是,非kerr术语的不同组合会导致chi不休,但没有逆转。也研究了非派别参数对椭圆波的强度,速度和脉冲宽度等物理量的影响。发现可以通过更改非参数参数来调整孤立波的速度。通过适当的参数选择,可以实现这些非参数椭圆波的稳定传播。

Exact chirped elliptic wave solutions are obtained within the framework of coupled cubic nonlinear Helmholtz equations in the presence of non-Kerr nonlinearity like self steepening and self frequency shift. It is shown that, for a particular combination of the self steepening and the self frequency shift parameters, the associated nontrivial phase gives rise to chirp reversal across the solitary wave profile. But a different combination of non-Kerr terms leads to chirping but no chirp reversal. The effect of nonparaxial parameter on physical quantities such as intensity, speed and pulse-width of the elliptic waves is studied too. It is found that the speed of the solitary wave can be tuned by altering the nonparaxial parameter. Stable propagation of these nonparaxial elliptic waves is achieved by an appropriate choice of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源