论文标题
快速匹配的追求与多人词典
Fast Matching Pursuit with Multi-Gabor Dictionaries
论文作者
论文摘要
在冗余词典中找到信号的最佳k-sparse近似是一个NP困难的问题。次优的贪婪匹配追求(MP)算法通常用于此任务。在这项工作中,我们提出了一种加速技术,并实现了作用于多型词典上的匹配追踪算法,即,几种Gabor型时频词典的串联,每种词都由可能不同的窗口和时间和频率移位参数组成,每个词都包括在内。该技术基于原子之间的预计和阈值内部产物,并直接在系数域中更新残留物,即没有往返信号域。由于提出的加速技术涉及大致更新步骤,因此我们提供了理论和实验结果,说明了所得算法的收敛性。该实现用C编写(与C99和C ++ 11兼容),我们还提供MATLAB和GNU八度接口。对于某些设置,该实现的速度比标准匹配的Pursuit工具包(MPTK)快70倍。
Finding the best K-sparse approximation of a signal in a redundant dictionary is an NP-hard problem. Suboptimal greedy matching pursuit (MP) algorithms are generally used for this task. In this work, we present an acceleration technique and an implementation of the matching pursuit algorithm acting on a multi-Gabor dictionary, i.e., a concatenation of several Gabor-type time-frequency dictionaries, each of which consisting of translations and modulations of a possibly different window and time and frequency shift parameters. The technique is based on pre-computing and thresholding inner products between atoms and on updating the residual directly in the coefficient domain, i.e., without the round-trip to the signal domain. Since the proposed acceleration technique involves an approximate update step, we provide theoretical and experimental results illustrating the convergence of the resulting algorithm. The implementation is written in C (compatible with C99 and C++11) and we also provide Matlab and GNU Octave interfaces. For some settings, the implementation is up to 70 times faster than the standard Matching Pursuit Toolkit (MPTK).