论文标题
高效高效的二元神经网络,用于视觉位置识别
Highly-Efficient Binary Neural Networks for Visual Place Recognition
论文作者
论文摘要
VPR是自动导航的基本任务,因为它使机器人能够在检测到已知位置时将自身定位在工作区中。尽管准确性是VPR技术的必不可少的要求,但计算和能源效率对于实际应用而言并不重要。基于CNN的技术归档了最先进的VPR性能,但在计算密集型和需求量方面是基于最新的技术。最近已提出二进制神经网络(BNN)有效地解决VPR。尽管典型的BNN比CNN更有效的数量级,但可以进一步改善其处理时间和能源的使用情况。在典型的BNN中,出于准确性的目的,第一卷积并未完全二进制。因此,第一层是最慢的网络阶段,需要在整个计算工作中占很大一部分。本文提出了VPR的一类BNN,该类别结合了深度可分离分解和二进制,以取代第一卷积层以提高计算和能源效率。我们的最佳模型可以实现最先进的VPR性能,而花费的时间和精力要比使用非二元卷积作为第一阶段的BNN的时间和精力要少得多。
VPR is a fundamental task for autonomous navigation as it enables a robot to localize itself in the workspace when a known location is detected. Although accuracy is an essential requirement for a VPR technique, computational and energy efficiency are not less important for real-world applications. CNN-based techniques archive state-of-the-art VPR performance but are computationally intensive and energy demanding. Binary neural networks (BNN) have been recently proposed to address VPR efficiently. Although a typical BNN is an order of magnitude more efficient than a CNN, its processing time and energy usage can be further improved. In a typical BNN, the first convolution is not completely binarized for the sake of accuracy. Consequently, the first layer is the slowest network stage, requiring a large share of the entire computational effort. This paper presents a class of BNNs for VPR that combines depthwise separable factorization and binarization to replace the first convolutional layer to improve computational and energy efficiency. Our best model achieves state-of-the-art VPR performance while spending considerably less time and energy to process an image than a BNN using a non-binary convolution as a first stage.