论文标题
feynman polytopes和紫外线和红外发散的热带几何形状
Feynman Polytopes and the Tropical Geometry of UV and IR Divergences
论文作者
论文摘要
我们介绍了一类多台面,这些杂音概念捕获了Schwinger参数空间中Feynman积分的紫外线和IR差异的结构,以统一的方式对待它们,因为它们以不同的相对速率缩小和扩展。尽管这些多面体通常以凸壳的形式出现 - 通过Symanzik多项式的牛顿多面体,我们表明它们也具有一个非常简单的双重描述,即通过定义各个方面的线性不平等所切除。正是这种双重定义使得为任何Feynman积分不可或缺的透明度理解并有效地计算领先的UV和IR差异。在紫外线的情况下,这提供了对熟悉的嵌套和重叠差异的透明几何理解。在IR中,多层人群对软/界线奇异性及其复杂的概括揭示了新的视角。热带几何形状提供了一个简单的框架,用于计算任何Feynman积分的领先的UV/IR差异,将它们与某些双锥的体积相关联。作为具体的应用,我们将Weinberg的定理推广到包括IR差异的表征,并对可以发生一般IR差异(对数和幂律)的时空维度进行分类。我们还计算了所有循环订单的矩形渔网图的领先IR差异,结果证明具有令人惊讶的简单组合描述。
We introduce a class of polytopes that concisely capture the structure of UV and IR divergences of general Feynman integrals in Schwinger parameter space, treating them in a unified way as worldline segments shrinking and expanding at different relative rates. While these polytopes conventionally arise as convex hulls - via Newton polytopes of Symanzik polynomials - we show that they also have a remarkably simple dual description as cut out by linear inequalities defining the facets. It is this dual definition that makes it possible to transparently understand and efficiently compute leading UV and IR divergences for any Feynman integral. In the case of the UV, this provides a transparent geometric understanding of the familiar nested and overlapping divergences. In the IR, the polytope exposes a new perspective on soft/collinear singularities and their intricate generalizations. Tropical geometry furnishes a simple framework for calculating the leading UV/IR divergences of any Feynman integral, associating them with the volumes of certain dual cones. As concrete applications, we generalize Weinberg's theorem to include a characterization of IR divergences, and classify space-time dimensions in which general IR divergences (logarithmic as well as power-law) can occur. We also compute the leading IR divergence of rectangular fishnet diagrams at all loop orders, which turn out to have a surprisingly simple combinatorial description.