论文标题

人机音乐共同创造的平坦潜流歧管

Flat Latent Manifolds for Human-machine Co-creation of Music

论文作者

Chen, Nutan, Benbouzid, Djalel, Ferroni, Francesco, Nitschke, Mathis, Pinna, Luciano, van der Smagt, Patrick

论文摘要

在艺术音乐生成中使用机器学习会引起人们对艺术质量的有争议的讨论,目的量化是荒谬的。因此,我们将音乐产生的算法视为与人类音乐家的对应者,在这种情况下,相互互动的相互作用将带来新的体验,无论是为音乐家还是观众带来新的体验。为了获得这种行为,我们求助于经常性变异自动编码器(VAE)的框架,并学会生成由人类音乐家种植的音乐。在学习的模型中,我们通过在潜在空间中插值生成新颖的音乐序列。但是,标准VAE不能保证其潜在表示中的任何形式的平滑度。这转化为生成的音乐序列的突然变化。为了克服这些局限性,我们将解码器的正规化并赋予潜在空间,并具有平坦的riemannian歧管,即是欧几里得空间等均衡的歧管。结果,在潜在空间中线性插值会产生逼真而平稳的音乐变化,适合我们目标的机器互动。我们通过音乐数据集中的一组实验为我们的方法提供了经验证据,并为与专业鼓手的交互式jam会话部署了模型。现场表现提供了定性的证据,表明鼓手可以直观地解释和利用潜在的代表来推动相互作用。除了音乐应用之外,我们的方法还展示了以解释性和与最终用户的互动驱动的机器学习模型设计的实例。

The use of machine learning in artistic music generation leads to controversial discussions of the quality of art, for which objective quantification is nonsensical. We therefore consider a music-generating algorithm as a counterpart to a human musician, in a setting where reciprocal interplay is to lead to new experiences, both for the musician and the audience. To obtain this behaviour, we resort to the framework of recurrent Variational Auto-Encoders (VAE) and learn to generate music, seeded by a human musician. In the learned model, we generate novel musical sequences by interpolation in latent space. Standard VAEs however do not guarantee any form of smoothness in their latent representation. This translates into abrupt changes in the generated music sequences. To overcome these limitations, we regularise the decoder and endow the latent space with a flat Riemannian manifold, i.e., a manifold that is isometric to the Euclidean space. As a result, linearly interpolating in the latent space yields realistic and smooth musical changes that fit the type of machine--musician interactions we aim for. We provide empirical evidence for our method via a set of experiments on music datasets and we deploy our model for an interactive jam session with a professional drummer. The live performance provides qualitative evidence that the latent representation can be intuitively interpreted and exploited by the drummer to drive the interplay. Beyond the musical application, our approach showcases an instance of human-centred design of machine-learning models, driven by interpretability and the interaction with the end user.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源