论文标题

相关的真实空间多体标记$ {\ Mathbb Z} _2 $拓扑绝缘子

A real-space many-body marker for correlated ${\mathbb Z}_2$ topological insulators

论文作者

Gilardoni, Ivan, Becca, Federico, Marrazzo, Antimo, Parola, Alberto

论文摘要

从现代极化理论中汲取线索[R. Resta,修订版Mod。物理。 {\ bf 66},899(1994)],我们确定一个操作员,以区分$ {\ mathbb z} _2 $ - eve(Trivial)和$ {\ Mathbb Z} _2 _2 _2 $ -ODD(TOPOLICAGION)在两个空间尺寸中的绝缘子。它的定义扩展了位置操作员[R. Resta和S. Sorella,物理。莱特牧师。 {\ bf 82},370(1999)],它是在一维系统中引入的。我们首先显示了一些非相互作用模型的示例,其中定义了单粒子波函数,并可以直接与大型系统大小的标准技术进行直接比较。然后,我们说明了其适用于在一个小群集上的相互作用模型的适用性,那里有精确的对角线化。它在Fock空间中的公式可以直接计算地面波函数(或IT的任何近似值)上的期望值,从而使我们能够研究一般的交互系统,例如强相关的拓扑绝缘子。

Taking the clue from the modern theory of polarization [R. Resta, Rev. Mod. Phys. {\bf 66}, 899 (1994)], we identify an operator to distinguish between ${\mathbb Z}_2$-even (trivial) and ${\mathbb Z}_2$-odd (topological) insulators in two spatial dimensions. Its definition extends the position operator [R. Resta and S. Sorella, Phys. Rev. Lett. {\bf 82}, 370 (1999)], which was introduced in one-dimensional systems. We first show a few examples of non-interacting models, where single-particle wave functions are defined and allow for a direct comparison with standard techniques on large system sizes. Then, we illustrate its applicability for an interacting model on a small cluster, where exact diagonalizations are available. Its formulation in the Fock space allows a direct computation of expectation values over the ground-state wave function (or any approximation of it), thus allowing us to investigate generic interacting systems, such as strongly-correlated topological insulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源