论文标题

在最近的邻居算法中插值的益处

Benefit of Interpolation in Nearest Neighbor Algorithms

论文作者

Xing, Yue, Song, Qifan, Cheng, Guang

论文摘要

在一些研究\ citep [e.g。,] [] {zhang2016毫无意义的深度学习}中,观察到,即使训练误差几乎为零,过度参数的深神经网络也会达到一个小的测试误差。尽管为理解这种所谓的“双重下降”现象\ citep [例如] [] {Belkin2018Reconconconing,Belkin2019two},但在本文中,我们将通过数据插座机构来强制执行零训练错误(没有过度参数化)。具体而言,我们考虑最近邻居(NN)算法中的一类插值加权方案。通过仔细表征统计风险中的乘法常数,我们揭示了分类和回归设置中数据插值水平的U形性能曲线。这使现有结果\ citep {belkin2018Does}逐渐增加,零训练错误并不一定会危害预测性能,并声称相反的结果,即微调的数据插值实际上{\ em strictly},可以改善(未互动)$ k $ k $ -k $ -KORITHM的预测性能和统计稳定性。最后,还将讨论我们结果的普遍性,例如距离测量和损坏的测试数据的变化。

In some studies \citep[e.g.,][]{zhang2016understanding} of deep learning, it is observed that over-parametrized deep neural networks achieve a small testing error even when the training error is almost zero. Despite numerous works towards understanding this so-called "double descent" phenomenon \citep[e.g.,][]{belkin2018reconciling,belkin2019two}, in this paper, we turn into another way to enforce zero training error (without over-parametrization) through a data interpolation mechanism. Specifically, we consider a class of interpolated weighting schemes in the nearest neighbors (NN) algorithms. By carefully characterizing the multiplicative constant in the statistical risk, we reveal a U-shaped performance curve for the level of data interpolation in both classification and regression setups. This sharpens the existing result \citep{belkin2018does} that zero training error does not necessarily jeopardize predictive performances and claims a counter-intuitive result that a mild degree of data interpolation actually {\em strictly} improve the prediction performance and statistical stability over those of the (un-interpolated) $k$-NN algorithm. In the end, the universality of our results, such as change of distance measure and corrupted testing data, will also be discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源