论文标题

了解用户想要什么的挑战:不一致的偏好和参与优化

The Challenge of Understanding What Users Want: Inconsistent Preferences and Engagement Optimization

论文作者

Kleinberg, Jon, Mullainathan, Sendhil, Raghavan, Manish

论文摘要

在线平台拥有大量数据,运行无数的实验并使用工业规模的算法来优化用户体验。尽管如此,许多用户似乎很遗憾他们在这些平台上花费的时间。一种可能的解释是激励措施未对准:平台不是为用户幸福而优化。我们建议该问题更深入,超越任何特定平台的具体激励措施,而是源于错误的基础假设:为了了解用户想要的内容,平台会查看用户的工作。然而,研究表明,个人经验肯定了,我们经常在此刻做出与我们实际想要的不一致的选择。在这项工作中,我们开发了一种媒体消费模型,用户具有不一致的偏好。我们考虑了一个平台,该平台只想最大化用户实用程序,但仅观察用户参与度。我们展示了用户偏好不一致的模型如何产生日常体验中熟悉但难以捕获的现象。我们模型中的关键要素是平台如何确定用户显示的内容的一种公式:它们通过内容的基础特征来优化大量潜在内容(内容歧管)。改善参与度是否可以改善用户福利取决于内容歧管中的运动方向:对于某些变化方向,增加参与度会使用户不太满意,而在其他方向上,增加参与度会使用户更加快乐。我们表征了内容歧管的结构,而越来越多的参与度无法增加用户实用性。通过将这些效果与平台设计选择的抽象联系起来,我们的模型创建了一个理论框架和词汇,在其中探索了设计,行为科学和社交媒体之间的相互作用。

Online platforms have a wealth of data, run countless experiments and use industrial-scale algorithms to optimize user experience. Despite this, many users seem to regret the time they spend on these platforms. One possible explanation is misaligned incentives: platforms are not optimizing for user happiness. We suggest the problem runs deeper, transcending the specific incentives of any particular platform, and instead stems from a mistaken foundational assumption: To understand what users want, platforms look at what users do. Yet research has demonstrated, and personal experience affirms, that we often make choices in the moment that are inconsistent with what we actually want. In this work, we develop a model of media consumption where users have inconsistent preferences. We consider a platform which simply wants to maximize user utility, but only observes user engagement. We show how our model of users' preference inconsistencies produces phenomena that are familiar from everyday experience, but difficult to capture in traditional user interaction models. A key ingredient in our model is a formulation for how platforms determine what to show users: they optimize over a large set of potential content (the content manifold) parametrized by underlying features of the content. Whether improving engagement improves user welfare depends on the direction of movement in the content manifold: for certain directions of change, increasing engagement makes users less happy, while in other directions, increasing engagement makes users happier. We characterize the structure of content manifolds for which increasing engagement fails to increase user utility. By linking these effects to abstractions of platform design choices, our model thus creates a theoretical framework and vocabulary in which to explore interactions between design, behavioral science, and social media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源