论文标题
曲折模型的量化
Quantization of the Zigzag Model
论文作者
论文摘要
Zigzag模型是一个相对论的可集成$ n $体系统,描述了在大规模隔离二维QCD中长长限制字符串的世界表格上领先的高能半经典动力学。我们讨论了该模型的量化。我们证明,要实现模型的一致量化,有必要说明相空间的非平凡几何形状。由此产生的庞加莱不变量子量子理论是$ t \ bar {t} $变形模型的亲密表弟。
The zigzag model is a relativistic integrable $N$-body system describing the leading high-energy semiclassical dynamics on the worldsheet of long confining strings in massive adjoint two-dimensional QCD. We discuss quantization of this model. We demonstrate that to achieve a consistent quantization of the model it is necessary to account for the non-trivial geometry of phase space. The resulting Poincaré invariant integrable quantum theory is a close cousin of $T\bar{T}$ deformed models.