论文标题
使用石墨烯波导的多维微波传感
Multi-dimensional microwave sensing using graphene waveguides
论文作者
论文摘要
本文介绍了一个电路封闭的宽带微波传感器,其中原子上薄的石墨烯层集成到共面波导中,并与微流体通道结合。正在测试的溶液和石墨烯表面之间的相互作用导致石墨烯直流和交流电导率的材料和浓度特异性修饰。此外,与金属微波传感器相比,通过边缘场的近距离接近材料的介电特性,波导中的波传播是通过材料的介电特性来改变的,从而导致了增强的S参数响应。通过电解门进一步控制石墨烯电导率的可能性使得一种新的多维方法合并化学场效应传感和微波测量方法。通过控制和同步频率扫描,微流体通道中的电化学门控和液体流量,我们生成了多维数据集,从而可以对所研究的解决方案进行彻底的研究。作为概念证明,我们将石墨烯表面功能化,以识别分散在磷酸盐缓冲盐水溶液中的特定单链DNA序列。我们达到了〜1个attomole的限制,以实现完美匹配的DNA链,而对于子PM浓度的敏感性约为3 dB/十年。这些结果表明,我们的设备代表了一种用于化学和生物学感应的新的准确的计量工具。
This paper presents an electrolytically gated broadband microwave sensor where atomically-thin graphene layers are integrated into coplanar waveguides and coupled with microfluidic channels. The interaction between a solution under test and the graphene surface causes material and concentration-specific modifications of graphene's DC and AC conductivity. Moreover, wave propagation in the waveguide is modified by the dielectric properties of materials in its close proximity via the fringe field, resulting in a combined sensing mechanism leading to an enhanced S-parameter response compared to metallic microwave sensors. The possibility of further controlling the graphene conductivity via an electrolytic gate enables a new, multi-dimensional approach merging chemical field-effect sensing and microwave measurement methods. By controlling and synchronizing frequency sweeps, electrochemical gating and liquid flow in the microfluidic channel, we generate multidimensional datasets that enable a thorough investigation of the solution under study. As proof of concept, we functionalize the graphene surface in order to identify specific single-stranded DNA sequences dispersed in phosphate buffered saline solution. We achieve a limit of detection of ~1 attomole per litre for a perfect match DNA strand and a sensitivity of ~3 dB/decade for sub-pM concentrations. These results show that our devices represent a new and accurate metrological tool for chemical and biological sensing.