论文标题

BVW字符串的免费字段实现

The free field realisation of the BVW string

论文作者

Gaberdiel, Matthias R., Naderi, Kiarash, Sriprachyakul, Vit

论文摘要

$ \ mathbb {t}^4 $的对称的Orbifold最近被证明是$ {\ rm ADS} _3 \ times {\ rm s}^3 \ times \ times \ times \ mathbb {t}^4 $的符合字符串理论的偶性。最好根据Berkovits,Vafa&Witten(BVW)的杂交形式主义提出的世界表格理论,就$ {\ rm ads} _3 \ times {\ rm s}^3 $而言,由$ \ \ mathfrak {psu {psu}(psu}(psu}(1,1,1,1,1,2)_k Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz Wz WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WZ WAM WONEL。在级别$ k = 1 $,$ \ mathfrak {psu}(1,1 | 2)_1 $具有免费的字段实现,该实现是从$ \ mathfrak {u}(1,1 | 2)_1 $的$ \ mathfrak {u \ mathfrak {u}(1)_1 $中获得的,通常称为$ z $,通常称为$ z $。我们表明,$ {\ cal n} = 2 $ BVW的发电机(其同时定义物理状态)的免费现场版本不会产生$ {\ cal n} = 2 $代数,但相当污染与$ z $ field的术语。我们还通过引入实现商$ z $的其他幽灵字段来展示如何克服这个问题。

The symmetric orbifold of $\mathbb{T}^4$ was recently shown to be exactly dual to string theory on ${\rm AdS}_3\times {\rm S}^3 \times \mathbb{T}^4$ with minimal ($k=1$) NS-NS flux. The worldsheet theory is best formulated in terms of the hybrid formalism of Berkovits, Vafa & Witten (BVW), in terms of which the ${\rm AdS}_3\times {\rm S}^3$ factor is described by a $\mathfrak{psu}(1,1|2)_k$ WZW model. At level $k=1$, $\mathfrak{psu}(1,1|2)_1$ has a free field realisation that is obtained from that of $\mathfrak{u}(1,1|2)_1$ upon setting a $\mathfrak{u}(1)$ field, often called $Z$, to zero. We show that the free field version of the ${\cal N}=2$ generators of BVW (whose cohomology defines the physical states) does not give rise to an ${\cal N}=2$ algebra, but is rather contaminated by terms proportional to the $Z$-field. We also show how to overcome this problem by introducing additional ghost fields that implement the quotienting by $Z$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源