论文标题

视网膜OCT图像的多尺度稀疏表示的阴影介绍

Multi-scale Sparse Representation-Based Shadow Inpainting for Retinal OCT Images

论文作者

Tang, Yaoqi, Li, Yufan, Liu, Hongshan, Li, Jiaxuan, Jin, Peiyao, Gan, Yu, Ling, Yuye, Su, Yikai

论文摘要

在视网膜光学相干断层扫描(OCT)图像中,浅表血管铸造的阴影区域对于准确,健壮的机器分析和临床诊断至关重要。传统的基于序列的方法,例如传播相邻信息逐渐填充缺失区域是具有成本效益的。但是,在处理较大的缺失区域和质地丰富的结构时,它们产生的结果较低。新兴的基于学习的方法(例如编码器码头网络)在自然图像授课任务中显示出令人鼓舞的结果。但是,除了对数据集的大小需求的高需求之外,他们通常还需要长时间的计算时间进行网络培训,这使得很难应用于通常的小型医疗数据集。为了应对这些挑战,我们提出了一个新颖的多尺度阴影介入框架,通过协同应用稀疏表示和深度学习:使用稀疏表示形式来从少量培训图像中提取功能,以进一步插入并在多尺度图像融合后正规化图像,同时使用互惠神经网络(CNN)来提高图像的图像。在图像介绍期间,我们根据阴影宽度将预处理的输入图像分为不同的分支,以从不同尺度收获互补信息。最后,基于稀疏表示的正规化模块旨在完善多尺度特征聚合后生成的内容。进行实验是为了将我们的提案与关于合成和现实世界阴影的传统和深度学习技术进行比较。结果表明,我们所提出的方法在视觉质量和定量指标方面获得了有利的图像,尤其是在呈现宽阔的阴影时。

Inpainting shadowed regions cast by superficial blood vessels in retinal optical coherence tomography (OCT) images is critical for accurate and robust machine analysis and clinical diagnosis. Traditional sequence-based approaches such as propagating neighboring information to gradually fill in the missing regions are cost-effective. But they generate less satisfactory outcomes when dealing with larger missing regions and texture-rich structures. Emerging deep learning-based methods such as encoder-decoder networks have shown promising results in natural image inpainting tasks. However, they typically need a long computational time for network training in addition to the high demand on the size of datasets, which makes it difficult to be applied on often small medical datasets. To address these challenges, we propose a novel multi-scale shadow inpainting framework for OCT images by synergically applying sparse representation and deep learning: sparse representation is used to extract features from a small amount of training images for further inpainting and to regularize the image after the multi-scale image fusion, while convolutional neural network (CNN) is employed to enhance the image quality. During the image inpainting, we divide preprocessed input images into different branches based on the shadow width to harvest complementary information from different scales. Finally, a sparse representation-based regularizing module is designed to refine the generated contents after multi-scale feature aggregation. Experiments are conducted to compare our proposal versus both traditional and deep learning-based techniques on synthetic and real-world shadows. Results demonstrate that our proposed method achieves favorable image inpainting in terms of visual quality and quantitative metrics, especially when wide shadows are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源