论文标题
部分可观测时空混沌系统的无模型预测
$\mathrm{H}\mathbb{F}_2$-synthetic homotopy groups of topological modular forms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
To any Adams-type spectrum $E$, Pstrągowski produced a symmetric monoidal stable $\infty$-category $Syn_E$ whose objects are, in a sense, ''formal Adams spectral sequences''. $Syn_E$ comes equipped with a lax symmetric monoidal functor $ν_E:Sp\to Syn_E$ from classical spectra, which embeds $Sp$ fully and faithfully in $Syn_E$, and is a category with a natural notion of bigraded homotopy groups. The bigraded homotopy groups $π_{*,*}ν_EX$ systematically record information about the homotopy groups $π_*X$ and the $E$-Adams spectral sequence of $X$. In this paper, we compute the $ν_{\mathrm{H}\mathbb{F}_2}\mathbb{F}_2$-Adams spectral sequence of $ν_{\mathrm{H}\mathbb{F}_2}tmf_2^{\wedge}$, synthetic versions of hidden $2$-, $η$-, $ν$-, and $\overlineκ$-extensions, and use this to deduce information about the homotopy ring structure of $π_{*,*}ν_{\mathrm{H}\mathbb{F}_2}tmf_2^{\wedge}$.