论文标题

部分可观测时空混沌系统的无模型预测

An End-to-End Cascaded Image Deraining and Object Detection Neural Network

论文作者

Wang, Kaige, Wang, Tianming, Qu, Jianchuang, Jiang, Huatao, Li, Qing, Chang, Lin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

While the deep learning-based image deraining methods have made great progress in recent years, there are two major shortcomings in their application in real-world situations. Firstly, the gap between the low-level vision task represented by rain removal and the high-level vision task represented by object detection is significant, and the low-level vision task can hardly contribute to the high-level vision task. Secondly, the quality of the deraining dataset needs to be improved. In fact, the rain lines in many baselines have a large gap with the real rain lines, and the resolution of the deraining dataset images is generally not ideally. Meanwhile, there are few common datasets for both the low-level vision task and the high-level vision task. In this paper, we explore the combination of the low-level vision task with the high-level vision task. Specifically, we propose an end-to-end object detection network for reducing the impact of rainfall, which consists of two cascaded networks, an improved image deraining network and an object detection network, respectively. We also design the components of the loss function to accommodate the characteristics of the different sub-networks. We then propose a dataset based on the KITTI dataset for rainfall removal and object detection, on which our network surpasses the state-of-the-art with a significant improvement in metrics. Besides, our proposed network is measured on driving videos collected by self-driving vehicles and shows positive results for rain removal and object detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源